Step |
Hyp |
Ref |
Expression |
1 |
|
s7rn.a |
|- ( ph -> A e. V ) |
2 |
|
s7rn.b |
|- ( ph -> B e. V ) |
3 |
|
s7rn.c |
|- ( ph -> C e. V ) |
4 |
|
s7rn.d |
|- ( ph -> D e. V ) |
5 |
|
s7rn.e |
|- ( ph -> E e. V ) |
6 |
|
s7rn.f |
|- ( ph -> F e. V ) |
7 |
|
s7rn.g |
|- ( ph -> G e. V ) |
8 |
|
s4s3 |
|- <" A B C D E F G "> = ( <" A B C D "> ++ <" E F G "> ) |
9 |
8
|
a1i |
|- ( ph -> <" A B C D E F G "> = ( <" A B C D "> ++ <" E F G "> ) ) |
10 |
9
|
rneqd |
|- ( ph -> ran <" A B C D E F G "> = ran ( <" A B C D "> ++ <" E F G "> ) ) |
11 |
|
s4cli |
|- <" A B C D "> e. Word _V |
12 |
|
s3cli |
|- <" E F G "> e. Word _V |
13 |
11 12
|
pm3.2i |
|- ( <" A B C D "> e. Word _V /\ <" E F G "> e. Word _V ) |
14 |
|
ccatrn |
|- ( ( <" A B C D "> e. Word _V /\ <" E F G "> e. Word _V ) -> ran ( <" A B C D "> ++ <" E F G "> ) = ( ran <" A B C D "> u. ran <" E F G "> ) ) |
15 |
13 14
|
mp1i |
|- ( ph -> ran ( <" A B C D "> ++ <" E F G "> ) = ( ran <" A B C D "> u. ran <" E F G "> ) ) |
16 |
|
df-s4 |
|- <" A B C D "> = ( <" A B C "> ++ <" D "> ) |
17 |
16
|
a1i |
|- ( ph -> <" A B C D "> = ( <" A B C "> ++ <" D "> ) ) |
18 |
17
|
rneqd |
|- ( ph -> ran <" A B C D "> = ran ( <" A B C "> ++ <" D "> ) ) |
19 |
|
s3cli |
|- <" A B C "> e. Word _V |
20 |
|
s1cli |
|- <" D "> e. Word _V |
21 |
19 20
|
pm3.2i |
|- ( <" A B C "> e. Word _V /\ <" D "> e. Word _V ) |
22 |
|
ccatrn |
|- ( ( <" A B C "> e. Word _V /\ <" D "> e. Word _V ) -> ran ( <" A B C "> ++ <" D "> ) = ( ran <" A B C "> u. ran <" D "> ) ) |
23 |
21 22
|
mp1i |
|- ( ph -> ran ( <" A B C "> ++ <" D "> ) = ( ran <" A B C "> u. ran <" D "> ) ) |
24 |
1 2 3
|
s3rn |
|- ( ph -> ran <" A B C "> = { A , B , C } ) |
25 |
|
s1rn |
|- ( D e. V -> ran <" D "> = { D } ) |
26 |
4 25
|
syl |
|- ( ph -> ran <" D "> = { D } ) |
27 |
24 26
|
uneq12d |
|- ( ph -> ( ran <" A B C "> u. ran <" D "> ) = ( { A , B , C } u. { D } ) ) |
28 |
18 23 27
|
3eqtrd |
|- ( ph -> ran <" A B C D "> = ( { A , B , C } u. { D } ) ) |
29 |
5 6 7
|
s3rn |
|- ( ph -> ran <" E F G "> = { E , F , G } ) |
30 |
28 29
|
uneq12d |
|- ( ph -> ( ran <" A B C D "> u. ran <" E F G "> ) = ( ( { A , B , C } u. { D } ) u. { E , F , G } ) ) |
31 |
10 15 30
|
3eqtrd |
|- ( ph -> ran <" A B C D E F G "> = ( ( { A , B , C } u. { D } ) u. { E , F , G } ) ) |