Metamath Proof Explorer


Theorem saddisj

Description: The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses saddisj.1
|- ( ph -> A C_ NN0 )
saddisj.2
|- ( ph -> B C_ NN0 )
saddisj.3
|- ( ph -> ( A i^i B ) = (/) )
Assertion saddisj
|- ( ph -> ( A sadd B ) = ( A u. B ) )

Proof

Step Hyp Ref Expression
1 saddisj.1
 |-  ( ph -> A C_ NN0 )
2 saddisj.2
 |-  ( ph -> B C_ NN0 )
3 saddisj.3
 |-  ( ph -> ( A i^i B ) = (/) )
4 sadcl
 |-  ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A sadd B ) C_ NN0 )
5 1 2 4 syl2anc
 |-  ( ph -> ( A sadd B ) C_ NN0 )
6 5 sseld
 |-  ( ph -> ( k e. ( A sadd B ) -> k e. NN0 ) )
7 1 2 unssd
 |-  ( ph -> ( A u. B ) C_ NN0 )
8 7 sseld
 |-  ( ph -> ( k e. ( A u. B ) -> k e. NN0 ) )
9 1 adantr
 |-  ( ( ph /\ k e. NN0 ) -> A C_ NN0 )
10 2 adantr
 |-  ( ( ph /\ k e. NN0 ) -> B C_ NN0 )
11 3 adantr
 |-  ( ( ph /\ k e. NN0 ) -> ( A i^i B ) = (/) )
12 eqid
 |-  seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( x e. NN0 |-> if ( x = 0 , (/) , ( x - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( x e. NN0 |-> if ( x = 0 , (/) , ( x - 1 ) ) ) )
13 simpr
 |-  ( ( ph /\ k e. NN0 ) -> k e. NN0 )
14 9 10 11 12 13 saddisjlem
 |-  ( ( ph /\ k e. NN0 ) -> ( k e. ( A sadd B ) <-> k e. ( A u. B ) ) )
15 14 ex
 |-  ( ph -> ( k e. NN0 -> ( k e. ( A sadd B ) <-> k e. ( A u. B ) ) ) )
16 6 8 15 pm5.21ndd
 |-  ( ph -> ( k e. ( A sadd B ) <-> k e. ( A u. B ) ) )
17 16 eqrdv
 |-  ( ph -> ( A sadd B ) = ( A u. B ) )