Description: The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | saddisj.1 | |- ( ph -> A C_ NN0 ) |
|
saddisj.2 | |- ( ph -> B C_ NN0 ) |
||
saddisj.3 | |- ( ph -> ( A i^i B ) = (/) ) |
||
Assertion | saddisj | |- ( ph -> ( A sadd B ) = ( A u. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saddisj.1 | |- ( ph -> A C_ NN0 ) |
|
2 | saddisj.2 | |- ( ph -> B C_ NN0 ) |
|
3 | saddisj.3 | |- ( ph -> ( A i^i B ) = (/) ) |
|
4 | sadcl | |- ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A sadd B ) C_ NN0 ) |
|
5 | 1 2 4 | syl2anc | |- ( ph -> ( A sadd B ) C_ NN0 ) |
6 | 5 | sseld | |- ( ph -> ( k e. ( A sadd B ) -> k e. NN0 ) ) |
7 | 1 2 | unssd | |- ( ph -> ( A u. B ) C_ NN0 ) |
8 | 7 | sseld | |- ( ph -> ( k e. ( A u. B ) -> k e. NN0 ) ) |
9 | 1 | adantr | |- ( ( ph /\ k e. NN0 ) -> A C_ NN0 ) |
10 | 2 | adantr | |- ( ( ph /\ k e. NN0 ) -> B C_ NN0 ) |
11 | 3 | adantr | |- ( ( ph /\ k e. NN0 ) -> ( A i^i B ) = (/) ) |
12 | eqid | |- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( x e. NN0 |-> if ( x = 0 , (/) , ( x - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( x e. NN0 |-> if ( x = 0 , (/) , ( x - 1 ) ) ) ) |
|
13 | simpr | |- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
|
14 | 9 10 11 12 13 | saddisjlem | |- ( ( ph /\ k e. NN0 ) -> ( k e. ( A sadd B ) <-> k e. ( A u. B ) ) ) |
15 | 14 | ex | |- ( ph -> ( k e. NN0 -> ( k e. ( A sadd B ) <-> k e. ( A u. B ) ) ) ) |
16 | 6 8 15 | pm5.21ndd | |- ( ph -> ( k e. ( A sadd B ) <-> k e. ( A u. B ) ) ) |
17 | 16 | eqrdv | |- ( ph -> ( A sadd B ) = ( A u. B ) ) |