Metamath Proof Explorer


Theorem saddisj

Description: The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses saddisj.1 φA0
saddisj.2 φB0
saddisj.3 φAB=
Assertion saddisj φAsaddB=AB

Proof

Step Hyp Ref Expression
1 saddisj.1 φA0
2 saddisj.2 φB0
3 saddisj.3 φAB=
4 sadcl A0B0AsaddB0
5 1 2 4 syl2anc φAsaddB0
6 5 sseld φkAsaddBk0
7 1 2 unssd φAB0
8 7 sseld φkABk0
9 1 adantr φk0A0
10 2 adantr φk0B0
11 3 adantr φk0AB=
12 eqid seq0c2𝑜,m0ifcaddmAmBc1𝑜x0ifx=0x1=seq0c2𝑜,m0ifcaddmAmBc1𝑜x0ifx=0x1
13 simpr φk0k0
14 9 10 11 12 13 saddisjlem φk0kAsaddBkAB
15 14 ex φk0kAsaddBkAB
16 6 8 15 pm5.21ndd φkAsaddBkAB
17 16 eqrdv φAsaddB=AB