Metamath Proof Explorer


Theorem saddisj

Description: The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses saddisj.1 φ A 0
saddisj.2 φ B 0
saddisj.3 φ A B =
Assertion saddisj φ A sadd B = A B

Proof

Step Hyp Ref Expression
1 saddisj.1 φ A 0
2 saddisj.2 φ B 0
3 saddisj.3 φ A B =
4 sadcl A 0 B 0 A sadd B 0
5 1 2 4 syl2anc φ A sadd B 0
6 5 sseld φ k A sadd B k 0
7 1 2 unssd φ A B 0
8 7 sseld φ k A B k 0
9 1 adantr φ k 0 A 0
10 2 adantr φ k 0 B 0
11 3 adantr φ k 0 A B =
12 eqid seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 x 0 if x = 0 x 1 = seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 x 0 if x = 0 x 1
13 simpr φ k 0 k 0
14 9 10 11 12 13 saddisjlem φ k 0 k A sadd B k A B
15 14 ex φ k 0 k A sadd B k A B
16 6 8 15 pm5.21ndd φ k A sadd B k A B
17 16 eqrdv φ A sadd B = A B