Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bit sequences
sadcl
Next ⟩
sadcom
Metamath Proof Explorer
Ascii
Unicode
Theorem
sadcl
Description:
The sum of two sequences is a sequence.
(Contributed by
Mario Carneiro
, 5-Sep-2016)
Ref
Expression
Assertion
sadcl
⊢
A
⊆
ℕ
0
∧
B
⊆
ℕ
0
→
A
sadd
B
⊆
ℕ
0
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
A
⊆
ℕ
0
∧
B
⊆
ℕ
0
→
A
⊆
ℕ
0
2
simpr
⊢
A
⊆
ℕ
0
∧
B
⊆
ℕ
0
→
B
⊆
ℕ
0
3
eqid
⊢
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
=
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
4
1
2
3
sadfval
⊢
A
⊆
ℕ
0
∧
B
⊆
ℕ
0
→
A
sadd
B
=
k
∈
ℕ
0
|
hadd
k
∈
A
k
∈
B
∅
∈
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
⁡
k
5
ssrab2
⊢
k
∈
ℕ
0
|
hadd
k
∈
A
k
∈
B
∅
∈
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
⁡
k
⊆
ℕ
0
6
4
5
eqsstrdi
⊢
A
⊆
ℕ
0
∧
B
⊆
ℕ
0
→
A
sadd
B
⊆
ℕ
0