Metamath Proof Explorer


Theorem sadcl

Description: The sum of two sequences is a sequence. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion sadcl A 0 B 0 A sadd B 0

Proof

Step Hyp Ref Expression
1 simpl A 0 B 0 A 0
2 simpr A 0 B 0 B 0
3 eqid seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 n 0 if n = 0 n 1 = seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 n 0 if n = 0 n 1
4 1 2 3 sadfval A 0 B 0 A sadd B = k 0 | hadd k A k B seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 n 0 if n = 0 n 1 k
5 ssrab2 k 0 | hadd k A k B seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 n 0 if n = 0 n 1 k 0
6 4 5 eqsstrdi A 0 B 0 A sadd B 0