| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sadaddlem.c |
|- C = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( bits ` A ) , m e. ( bits ` B ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 2 |
|
sadaddlem.k |
|- K = `' ( bits |` NN0 ) |
| 3 |
|
sadaddlem.1 |
|- ( ph -> A e. ZZ ) |
| 4 |
|
sadaddlem.2 |
|- ( ph -> B e. ZZ ) |
| 5 |
|
sadaddlem.3 |
|- ( ph -> N e. NN0 ) |
| 6 |
|
2nn |
|- 2 e. NN |
| 7 |
6
|
a1i |
|- ( ph -> 2 e. NN ) |
| 8 |
7 5
|
nnexpcld |
|- ( ph -> ( 2 ^ N ) e. NN ) |
| 9 |
8
|
nnzd |
|- ( ph -> ( 2 ^ N ) e. ZZ ) |
| 10 |
|
inss1 |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ ( bits ` A ) |
| 11 |
|
bitsss |
|- ( bits ` A ) C_ NN0 |
| 12 |
10 11
|
sstri |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ NN0 |
| 13 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 14 |
|
inss2 |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 15 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 16 |
13 14 15
|
mp2an |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. Fin |
| 17 |
|
elfpw |
|- ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 18 |
12 16 17
|
mpbir2an |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) |
| 19 |
|
bitsf1o |
|- ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) |
| 20 |
|
f1ocnv |
|- ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
| 21 |
|
f1of |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 ) |
| 22 |
19 20 21
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 |
| 23 |
2
|
feq1i |
|- ( K : ( ~P NN0 i^i Fin ) --> NN0 <-> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 ) |
| 24 |
22 23
|
mpbir |
|- K : ( ~P NN0 i^i Fin ) --> NN0 |
| 25 |
24
|
ffvelcdmi |
|- ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 26 |
18 25
|
mp1i |
|- ( ph -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 27 |
26
|
nn0zd |
|- ( ph -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
| 28 |
3 27
|
zsubcld |
|- ( ph -> ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) |
| 29 |
|
inss1 |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ ( bits ` B ) |
| 30 |
|
bitsss |
|- ( bits ` B ) C_ NN0 |
| 31 |
29 30
|
sstri |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ NN0 |
| 32 |
|
inss2 |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 33 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 34 |
13 32 33
|
mp2an |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. Fin |
| 35 |
|
elfpw |
|- ( ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 36 |
31 34 35
|
mpbir2an |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) |
| 37 |
24
|
ffvelcdmi |
|- ( ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 38 |
36 37
|
mp1i |
|- ( ph -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 39 |
38
|
nn0zd |
|- ( ph -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
| 40 |
4 39
|
zsubcld |
|- ( ph -> ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) |
| 41 |
2
|
fveq1i |
|- ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) |
| 42 |
3 8
|
zmodcld |
|- ( ph -> ( A mod ( 2 ^ N ) ) e. NN0 ) |
| 43 |
42
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( A mod ( 2 ^ N ) ) ) = ( bits ` ( A mod ( 2 ^ N ) ) ) ) |
| 44 |
|
bitsmod |
|- ( ( A e. ZZ /\ N e. NN0 ) -> ( bits ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) |
| 45 |
3 5 44
|
syl2anc |
|- ( ph -> ( bits ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) |
| 46 |
43 45
|
eqtrd |
|- ( ph -> ( ( bits |` NN0 ) ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) |
| 47 |
|
f1ocnvfv |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( A mod ( 2 ^ N ) ) e. NN0 ) -> ( ( ( bits |` NN0 ) ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( A mod ( 2 ^ N ) ) ) ) |
| 48 |
19 42 47
|
sylancr |
|- ( ph -> ( ( ( bits |` NN0 ) ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( A mod ( 2 ^ N ) ) ) ) |
| 49 |
46 48
|
mpd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( A mod ( 2 ^ N ) ) ) |
| 50 |
41 49
|
eqtrid |
|- ( ph -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( A mod ( 2 ^ N ) ) ) |
| 51 |
50
|
oveq2d |
|- ( ph -> ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) = ( A - ( A mod ( 2 ^ N ) ) ) ) |
| 52 |
51
|
oveq1d |
|- ( ph -> ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) = ( ( A - ( A mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
| 53 |
3
|
zred |
|- ( ph -> A e. RR ) |
| 54 |
8
|
nnrpd |
|- ( ph -> ( 2 ^ N ) e. RR+ ) |
| 55 |
|
moddifz |
|- ( ( A e. RR /\ ( 2 ^ N ) e. RR+ ) -> ( ( A - ( A mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
| 56 |
53 54 55
|
syl2anc |
|- ( ph -> ( ( A - ( A mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
| 57 |
52 56
|
eqeltrd |
|- ( ph -> ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
| 58 |
8
|
nnne0d |
|- ( ph -> ( 2 ^ N ) =/= 0 ) |
| 59 |
|
dvdsval2 |
|- ( ( ( 2 ^ N ) e. ZZ /\ ( 2 ^ N ) =/= 0 /\ ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) -> ( ( 2 ^ N ) || ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) <-> ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) ) |
| 60 |
9 58 28 59
|
syl3anc |
|- ( ph -> ( ( 2 ^ N ) || ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) <-> ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) ) |
| 61 |
57 60
|
mpbird |
|- ( ph -> ( 2 ^ N ) || ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) ) |
| 62 |
2
|
fveq1i |
|- ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) |
| 63 |
4 8
|
zmodcld |
|- ( ph -> ( B mod ( 2 ^ N ) ) e. NN0 ) |
| 64 |
63
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( B mod ( 2 ^ N ) ) ) = ( bits ` ( B mod ( 2 ^ N ) ) ) ) |
| 65 |
|
bitsmod |
|- ( ( B e. ZZ /\ N e. NN0 ) -> ( bits ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) |
| 66 |
4 5 65
|
syl2anc |
|- ( ph -> ( bits ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) |
| 67 |
64 66
|
eqtrd |
|- ( ph -> ( ( bits |` NN0 ) ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) |
| 68 |
|
f1ocnvfv |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( B mod ( 2 ^ N ) ) e. NN0 ) -> ( ( ( bits |` NN0 ) ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( B mod ( 2 ^ N ) ) ) ) |
| 69 |
19 63 68
|
sylancr |
|- ( ph -> ( ( ( bits |` NN0 ) ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( B mod ( 2 ^ N ) ) ) ) |
| 70 |
67 69
|
mpd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( B mod ( 2 ^ N ) ) ) |
| 71 |
62 70
|
eqtrid |
|- ( ph -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( B mod ( 2 ^ N ) ) ) |
| 72 |
71
|
oveq2d |
|- ( ph -> ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) = ( B - ( B mod ( 2 ^ N ) ) ) ) |
| 73 |
72
|
oveq1d |
|- ( ph -> ( ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) = ( ( B - ( B mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
| 74 |
4
|
zred |
|- ( ph -> B e. RR ) |
| 75 |
|
moddifz |
|- ( ( B e. RR /\ ( 2 ^ N ) e. RR+ ) -> ( ( B - ( B mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
| 76 |
74 54 75
|
syl2anc |
|- ( ph -> ( ( B - ( B mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
| 77 |
73 76
|
eqeltrd |
|- ( ph -> ( ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
| 78 |
|
dvdsval2 |
|- ( ( ( 2 ^ N ) e. ZZ /\ ( 2 ^ N ) =/= 0 /\ ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) -> ( ( 2 ^ N ) || ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) <-> ( ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) ) |
| 79 |
9 58 40 78
|
syl3anc |
|- ( ph -> ( ( 2 ^ N ) || ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) <-> ( ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) ) |
| 80 |
77 79
|
mpbird |
|- ( ph -> ( 2 ^ N ) || ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) |
| 81 |
9 28 40 61 80
|
dvds2addd |
|- ( ph -> ( 2 ^ N ) || ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) + ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) |
| 82 |
3
|
zcnd |
|- ( ph -> A e. CC ) |
| 83 |
4
|
zcnd |
|- ( ph -> B e. CC ) |
| 84 |
26
|
nn0cnd |
|- ( ph -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) e. CC ) |
| 85 |
38
|
nn0cnd |
|- ( ph -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) e. CC ) |
| 86 |
82 83 84 85
|
addsub4d |
|- ( ph -> ( ( A + B ) - ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) = ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) + ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) |
| 87 |
81 86
|
breqtrrd |
|- ( ph -> ( 2 ^ N ) || ( ( A + B ) - ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) |
| 88 |
3 4
|
zaddcld |
|- ( ph -> ( A + B ) e. ZZ ) |
| 89 |
27 39
|
zaddcld |
|- ( ph -> ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) |
| 90 |
|
moddvds |
|- ( ( ( 2 ^ N ) e. NN /\ ( A + B ) e. ZZ /\ ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) -> ( ( ( A + B ) mod ( 2 ^ N ) ) = ( ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) <-> ( 2 ^ N ) || ( ( A + B ) - ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) ) |
| 91 |
8 88 89 90
|
syl3anc |
|- ( ph -> ( ( ( A + B ) mod ( 2 ^ N ) ) = ( ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) <-> ( 2 ^ N ) || ( ( A + B ) - ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) ) |
| 92 |
87 91
|
mpbird |
|- ( ph -> ( ( A + B ) mod ( 2 ^ N ) ) = ( ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 93 |
11
|
a1i |
|- ( ph -> ( bits ` A ) C_ NN0 ) |
| 94 |
30
|
a1i |
|- ( ph -> ( bits ` B ) C_ NN0 ) |
| 95 |
93 94 1 5 2
|
sadadd3 |
|- ( ph -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 96 |
|
inss1 |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ ( ( bits ` A ) sadd ( bits ` B ) ) |
| 97 |
|
sadcl |
|- ( ( ( bits ` A ) C_ NN0 /\ ( bits ` B ) C_ NN0 ) -> ( ( bits ` A ) sadd ( bits ` B ) ) C_ NN0 ) |
| 98 |
11 30 97
|
mp2an |
|- ( ( bits ` A ) sadd ( bits ` B ) ) C_ NN0 |
| 99 |
96 98
|
sstri |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ NN0 |
| 100 |
|
inss2 |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 101 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 102 |
13 100 101
|
mp2an |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. Fin |
| 103 |
|
elfpw |
|- ( ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 104 |
99 102 103
|
mpbir2an |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) |
| 105 |
24
|
ffvelcdmi |
|- ( ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 106 |
104 105
|
mp1i |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 107 |
106
|
nn0red |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. RR ) |
| 108 |
106
|
nn0ge0d |
|- ( ph -> 0 <_ ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
| 109 |
2
|
fveq1i |
|- ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) |
| 110 |
109
|
fveq2i |
|- ( ( bits |` NN0 ) ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
| 111 |
106
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) ) |
| 112 |
104
|
a1i |
|- ( ph -> ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 113 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) |
| 114 |
19 112 113
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) |
| 115 |
110 111 114
|
3eqtr3a |
|- ( ph -> ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) |
| 116 |
115 100
|
eqsstrdi |
|- ( ph -> ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
| 117 |
106
|
nn0zd |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
| 118 |
|
bitsfzo |
|- ( ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 119 |
117 5 118
|
syl2anc |
|- ( ph -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 120 |
116 119
|
mpbird |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
| 121 |
|
elfzolt2 |
|- ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 122 |
120 121
|
syl |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 123 |
|
modid |
|- ( ( ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) /\ ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
| 124 |
107 54 108 122 123
|
syl22anc |
|- ( ph -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
| 125 |
92 95 124
|
3eqtr2d |
|- ( ph -> ( ( A + B ) mod ( 2 ^ N ) ) = ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
| 126 |
125
|
fveq2d |
|- ( ph -> ( bits ` ( ( A + B ) mod ( 2 ^ N ) ) ) = ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) ) |
| 127 |
126 115
|
eqtr2d |
|- ( ph -> ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) = ( bits ` ( ( A + B ) mod ( 2 ^ N ) ) ) ) |