Step |
Hyp |
Ref |
Expression |
1 |
|
sadaddlem.c |
|- C = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( bits ` A ) , m e. ( bits ` B ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
2 |
|
sadaddlem.k |
|- K = `' ( bits |` NN0 ) |
3 |
|
sadaddlem.1 |
|- ( ph -> A e. ZZ ) |
4 |
|
sadaddlem.2 |
|- ( ph -> B e. ZZ ) |
5 |
|
sadaddlem.3 |
|- ( ph -> N e. NN0 ) |
6 |
|
2nn |
|- 2 e. NN |
7 |
6
|
a1i |
|- ( ph -> 2 e. NN ) |
8 |
7 5
|
nnexpcld |
|- ( ph -> ( 2 ^ N ) e. NN ) |
9 |
8
|
nnzd |
|- ( ph -> ( 2 ^ N ) e. ZZ ) |
10 |
|
inss1 |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ ( bits ` A ) |
11 |
|
bitsss |
|- ( bits ` A ) C_ NN0 |
12 |
10 11
|
sstri |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ NN0 |
13 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
14 |
|
inss2 |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
15 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. Fin ) |
16 |
13 14 15
|
mp2an |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. Fin |
17 |
|
elfpw |
|- ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
18 |
12 16 17
|
mpbir2an |
|- ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) |
19 |
|
bitsf1o |
|- ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) |
20 |
|
f1ocnv |
|- ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
21 |
|
f1of |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 ) |
22 |
19 20 21
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 |
23 |
2
|
feq1i |
|- ( K : ( ~P NN0 i^i Fin ) --> NN0 <-> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 ) |
24 |
22 23
|
mpbir |
|- K : ( ~P NN0 i^i Fin ) --> NN0 |
25 |
24
|
ffvelrni |
|- ( ( ( bits ` A ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
26 |
18 25
|
mp1i |
|- ( ph -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
27 |
26
|
nn0zd |
|- ( ph -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
28 |
3 27
|
zsubcld |
|- ( ph -> ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) |
29 |
|
inss1 |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ ( bits ` B ) |
30 |
|
bitsss |
|- ( bits ` B ) C_ NN0 |
31 |
29 30
|
sstri |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ NN0 |
32 |
|
inss2 |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
33 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. Fin ) |
34 |
13 32 33
|
mp2an |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. Fin |
35 |
|
elfpw |
|- ( ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( bits ` B ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
36 |
31 34 35
|
mpbir2an |
|- ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) |
37 |
24
|
ffvelrni |
|- ( ( ( bits ` B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
38 |
36 37
|
mp1i |
|- ( ph -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
39 |
38
|
nn0zd |
|- ( ph -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
40 |
4 39
|
zsubcld |
|- ( ph -> ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) |
41 |
2
|
fveq1i |
|- ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) |
42 |
3 8
|
zmodcld |
|- ( ph -> ( A mod ( 2 ^ N ) ) e. NN0 ) |
43 |
42
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( A mod ( 2 ^ N ) ) ) = ( bits ` ( A mod ( 2 ^ N ) ) ) ) |
44 |
|
bitsmod |
|- ( ( A e. ZZ /\ N e. NN0 ) -> ( bits ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) |
45 |
3 5 44
|
syl2anc |
|- ( ph -> ( bits ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) |
46 |
43 45
|
eqtrd |
|- ( ph -> ( ( bits |` NN0 ) ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) |
47 |
|
f1ocnvfv |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( A mod ( 2 ^ N ) ) e. NN0 ) -> ( ( ( bits |` NN0 ) ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( A mod ( 2 ^ N ) ) ) ) |
48 |
19 42 47
|
sylancr |
|- ( ph -> ( ( ( bits |` NN0 ) ` ( A mod ( 2 ^ N ) ) ) = ( ( bits ` A ) i^i ( 0 ..^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( A mod ( 2 ^ N ) ) ) ) |
49 |
46 48
|
mpd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( A mod ( 2 ^ N ) ) ) |
50 |
41 49
|
eqtrid |
|- ( ph -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) = ( A mod ( 2 ^ N ) ) ) |
51 |
50
|
oveq2d |
|- ( ph -> ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) = ( A - ( A mod ( 2 ^ N ) ) ) ) |
52 |
51
|
oveq1d |
|- ( ph -> ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) = ( ( A - ( A mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
53 |
3
|
zred |
|- ( ph -> A e. RR ) |
54 |
8
|
nnrpd |
|- ( ph -> ( 2 ^ N ) e. RR+ ) |
55 |
|
moddifz |
|- ( ( A e. RR /\ ( 2 ^ N ) e. RR+ ) -> ( ( A - ( A mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
56 |
53 54 55
|
syl2anc |
|- ( ph -> ( ( A - ( A mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
57 |
52 56
|
eqeltrd |
|- ( ph -> ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
58 |
8
|
nnne0d |
|- ( ph -> ( 2 ^ N ) =/= 0 ) |
59 |
|
dvdsval2 |
|- ( ( ( 2 ^ N ) e. ZZ /\ ( 2 ^ N ) =/= 0 /\ ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) -> ( ( 2 ^ N ) || ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) <-> ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) ) |
60 |
9 58 28 59
|
syl3anc |
|- ( ph -> ( ( 2 ^ N ) || ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) <-> ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) ) |
61 |
57 60
|
mpbird |
|- ( ph -> ( 2 ^ N ) || ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) ) |
62 |
2
|
fveq1i |
|- ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) |
63 |
4 8
|
zmodcld |
|- ( ph -> ( B mod ( 2 ^ N ) ) e. NN0 ) |
64 |
63
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( B mod ( 2 ^ N ) ) ) = ( bits ` ( B mod ( 2 ^ N ) ) ) ) |
65 |
|
bitsmod |
|- ( ( B e. ZZ /\ N e. NN0 ) -> ( bits ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) |
66 |
4 5 65
|
syl2anc |
|- ( ph -> ( bits ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) |
67 |
64 66
|
eqtrd |
|- ( ph -> ( ( bits |` NN0 ) ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) |
68 |
|
f1ocnvfv |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( B mod ( 2 ^ N ) ) e. NN0 ) -> ( ( ( bits |` NN0 ) ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( B mod ( 2 ^ N ) ) ) ) |
69 |
19 63 68
|
sylancr |
|- ( ph -> ( ( ( bits |` NN0 ) ` ( B mod ( 2 ^ N ) ) ) = ( ( bits ` B ) i^i ( 0 ..^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( B mod ( 2 ^ N ) ) ) ) |
70 |
67 69
|
mpd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( B mod ( 2 ^ N ) ) ) |
71 |
62 70
|
eqtrid |
|- ( ph -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) = ( B mod ( 2 ^ N ) ) ) |
72 |
71
|
oveq2d |
|- ( ph -> ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) = ( B - ( B mod ( 2 ^ N ) ) ) ) |
73 |
72
|
oveq1d |
|- ( ph -> ( ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) = ( ( B - ( B mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
74 |
4
|
zred |
|- ( ph -> B e. RR ) |
75 |
|
moddifz |
|- ( ( B e. RR /\ ( 2 ^ N ) e. RR+ ) -> ( ( B - ( B mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
76 |
74 54 75
|
syl2anc |
|- ( ph -> ( ( B - ( B mod ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
77 |
73 76
|
eqeltrd |
|- ( ph -> ( ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) |
78 |
|
dvdsval2 |
|- ( ( ( 2 ^ N ) e. ZZ /\ ( 2 ^ N ) =/= 0 /\ ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) -> ( ( 2 ^ N ) || ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) <-> ( ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) ) |
79 |
9 58 40 78
|
syl3anc |
|- ( ph -> ( ( 2 ^ N ) || ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) <-> ( ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) / ( 2 ^ N ) ) e. ZZ ) ) |
80 |
77 79
|
mpbird |
|- ( ph -> ( 2 ^ N ) || ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) |
81 |
9 28 40 61 80
|
dvds2addd |
|- ( ph -> ( 2 ^ N ) || ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) + ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) |
82 |
3
|
zcnd |
|- ( ph -> A e. CC ) |
83 |
4
|
zcnd |
|- ( ph -> B e. CC ) |
84 |
26
|
nn0cnd |
|- ( ph -> ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) e. CC ) |
85 |
38
|
nn0cnd |
|- ( ph -> ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) e. CC ) |
86 |
82 83 84 85
|
addsub4d |
|- ( ph -> ( ( A + B ) - ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) = ( ( A - ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) ) + ( B - ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) |
87 |
81 86
|
breqtrrd |
|- ( ph -> ( 2 ^ N ) || ( ( A + B ) - ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) |
88 |
3 4
|
zaddcld |
|- ( ph -> ( A + B ) e. ZZ ) |
89 |
27 39
|
zaddcld |
|- ( ph -> ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) |
90 |
|
moddvds |
|- ( ( ( 2 ^ N ) e. NN /\ ( A + B ) e. ZZ /\ ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) e. ZZ ) -> ( ( ( A + B ) mod ( 2 ^ N ) ) = ( ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) <-> ( 2 ^ N ) || ( ( A + B ) - ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) ) |
91 |
8 88 89 90
|
syl3anc |
|- ( ph -> ( ( ( A + B ) mod ( 2 ^ N ) ) = ( ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) <-> ( 2 ^ N ) || ( ( A + B ) - ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) ) ) ) |
92 |
87 91
|
mpbird |
|- ( ph -> ( ( A + B ) mod ( 2 ^ N ) ) = ( ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
93 |
11
|
a1i |
|- ( ph -> ( bits ` A ) C_ NN0 ) |
94 |
30
|
a1i |
|- ( ph -> ( bits ` B ) C_ NN0 ) |
95 |
93 94 1 5 2
|
sadadd3 |
|- ( ph -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( K ` ( ( bits ` A ) i^i ( 0 ..^ N ) ) ) + ( K ` ( ( bits ` B ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
96 |
|
inss1 |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ ( ( bits ` A ) sadd ( bits ` B ) ) |
97 |
|
sadcl |
|- ( ( ( bits ` A ) C_ NN0 /\ ( bits ` B ) C_ NN0 ) -> ( ( bits ` A ) sadd ( bits ` B ) ) C_ NN0 ) |
98 |
11 30 97
|
mp2an |
|- ( ( bits ` A ) sadd ( bits ` B ) ) C_ NN0 |
99 |
96 98
|
sstri |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ NN0 |
100 |
|
inss2 |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
101 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
102 |
13 100 101
|
mp2an |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. Fin |
103 |
|
elfpw |
|- ( ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
104 |
99 102 103
|
mpbir2an |
|- ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) |
105 |
24
|
ffvelrni |
|- ( ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
106 |
104 105
|
mp1i |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
107 |
106
|
nn0red |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. RR ) |
108 |
106
|
nn0ge0d |
|- ( ph -> 0 <_ ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
109 |
2
|
fveq1i |
|- ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) |
110 |
109
|
fveq2i |
|- ( ( bits |` NN0 ) ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
111 |
106
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) ) |
112 |
104
|
a1i |
|- ( ph -> ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
113 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) |
114 |
19 112 113
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) |
115 |
110 111 114
|
3eqtr3a |
|- ( ph -> ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) |
116 |
115 100
|
eqsstrdi |
|- ( ph -> ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
117 |
106
|
nn0zd |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
118 |
|
bitsfzo |
|- ( ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
119 |
117 5 118
|
syl2anc |
|- ( ph -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
120 |
116 119
|
mpbird |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
121 |
|
elfzolt2 |
|- ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
122 |
120 121
|
syl |
|- ( ph -> ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
123 |
|
modid |
|- ( ( ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) /\ ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
124 |
107 54 108 122 123
|
syl22anc |
|- ( ph -> ( ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
125 |
92 95 124
|
3eqtr2d |
|- ( ph -> ( ( A + B ) mod ( 2 ^ N ) ) = ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) |
126 |
125
|
fveq2d |
|- ( ph -> ( bits ` ( ( A + B ) mod ( 2 ^ N ) ) ) = ( bits ` ( K ` ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) ) ) ) |
127 |
126 115
|
eqtr2d |
|- ( ph -> ( ( ( bits ` A ) sadd ( bits ` B ) ) i^i ( 0 ..^ N ) ) = ( bits ` ( ( A + B ) mod ( 2 ^ N ) ) ) ) |