Step |
Hyp |
Ref |
Expression |
1 |
|
sadval.a |
|- ( ph -> A C_ NN0 ) |
2 |
|
sadval.b |
|- ( ph -> B C_ NN0 ) |
3 |
|
sadval.c |
|- C = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
4 |
|
sadcp1.n |
|- ( ph -> N e. NN0 ) |
5 |
1 2 3
|
sadfval |
|- ( ph -> ( A sadd B ) = { k e. NN0 | hadd ( k e. A , k e. B , (/) e. ( C ` k ) ) } ) |
6 |
5
|
eleq2d |
|- ( ph -> ( N e. ( A sadd B ) <-> N e. { k e. NN0 | hadd ( k e. A , k e. B , (/) e. ( C ` k ) ) } ) ) |
7 |
|
eleq1 |
|- ( k = N -> ( k e. A <-> N e. A ) ) |
8 |
|
eleq1 |
|- ( k = N -> ( k e. B <-> N e. B ) ) |
9 |
|
fveq2 |
|- ( k = N -> ( C ` k ) = ( C ` N ) ) |
10 |
9
|
eleq2d |
|- ( k = N -> ( (/) e. ( C ` k ) <-> (/) e. ( C ` N ) ) ) |
11 |
7 8 10
|
hadbi123d |
|- ( k = N -> ( hadd ( k e. A , k e. B , (/) e. ( C ` k ) ) <-> hadd ( N e. A , N e. B , (/) e. ( C ` N ) ) ) ) |
12 |
11
|
elrab3 |
|- ( N e. NN0 -> ( N e. { k e. NN0 | hadd ( k e. A , k e. B , (/) e. ( C ` k ) ) } <-> hadd ( N e. A , N e. B , (/) e. ( C ` N ) ) ) ) |
13 |
4 12
|
syl |
|- ( ph -> ( N e. { k e. NN0 | hadd ( k e. A , k e. B , (/) e. ( C ` k ) ) } <-> hadd ( N e. A , N e. B , (/) e. ( C ` N ) ) ) ) |
14 |
6 13
|
bitrd |
|- ( ph -> ( N e. ( A sadd B ) <-> hadd ( N e. A , N e. B , (/) e. ( C ` N ) ) ) ) |