| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatid.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | scmatid.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | scmatid.e |  |-  E = ( Base ` R ) | 
						
							| 4 |  | scmatid.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | scmatid.s |  |-  S = ( N ScMat R ) | 
						
							| 6 |  | scmatsgrp1.d |  |-  D = ( N DMat R ) | 
						
							| 7 |  | scmatsgrp1.c |  |-  C = ( A |`s D ) | 
						
							| 8 | 1 2 3 4 5 6 7 | scmatsgrp1 |  |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubGrp ` C ) ) | 
						
							| 9 | 1 2 4 6 | dmatsrng |  |-  ( ( R e. Ring /\ N e. Fin ) -> D e. ( SubRing ` A ) ) | 
						
							| 10 | 9 | ancoms |  |-  ( ( N e. Fin /\ R e. Ring ) -> D e. ( SubRing ` A ) ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 12 | 7 11 | subrg1 |  |-  ( D e. ( SubRing ` A ) -> ( 1r ` A ) = ( 1r ` C ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( 1r ` C ) ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( 1r ` A ) ) | 
						
							| 15 | 1 2 3 4 5 | scmatid |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. S ) | 
						
							| 16 | 14 15 | eqeltrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) e. S ) | 
						
							| 17 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 18 | 7 17 | ressmulr |  |-  ( D e. ( SubRing ` A ) -> ( .r ` A ) = ( .r ` C ) ) | 
						
							| 19 | 10 18 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( .r ` A ) = ( .r ` C ) ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( .r ` C ) = ( .r ` A ) ) | 
						
							| 21 | 20 | oveqdr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. S /\ y e. S ) ) -> ( x ( .r ` C ) y ) = ( x ( .r ` A ) y ) ) | 
						
							| 22 | 1 2 3 4 5 | scmatmulcl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. S /\ y e. S ) ) -> ( x ( .r ` A ) y ) e. S ) | 
						
							| 23 | 21 22 | eqeltrd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. S /\ y e. S ) ) -> ( x ( .r ` C ) y ) e. S ) | 
						
							| 24 | 23 | ralrimivva |  |-  ( ( N e. Fin /\ R e. Ring ) -> A. x e. S A. y e. S ( x ( .r ` C ) y ) e. S ) | 
						
							| 25 | 7 | subrgring |  |-  ( D e. ( SubRing ` A ) -> C e. Ring ) | 
						
							| 26 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 27 |  | eqid |  |-  ( 1r ` C ) = ( 1r ` C ) | 
						
							| 28 |  | eqid |  |-  ( .r ` C ) = ( .r ` C ) | 
						
							| 29 | 26 27 28 | issubrg2 |  |-  ( C e. Ring -> ( S e. ( SubRing ` C ) <-> ( S e. ( SubGrp ` C ) /\ ( 1r ` C ) e. S /\ A. x e. S A. y e. S ( x ( .r ` C ) y ) e. S ) ) ) | 
						
							| 30 | 10 25 29 | 3syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( S e. ( SubRing ` C ) <-> ( S e. ( SubGrp ` C ) /\ ( 1r ` C ) e. S /\ A. x e. S A. y e. S ( x ( .r ` C ) y ) e. S ) ) ) | 
						
							| 31 | 8 16 24 30 | mpbir3and |  |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) ) |