Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
|- A = ( N Mat R ) |
2 |
|
scmatid.b |
|- B = ( Base ` A ) |
3 |
|
scmatid.e |
|- E = ( Base ` R ) |
4 |
|
scmatid.0 |
|- .0. = ( 0g ` R ) |
5 |
|
scmatid.s |
|- S = ( N ScMat R ) |
6 |
|
scmatsgrp1.d |
|- D = ( N DMat R ) |
7 |
|
scmatsgrp1.c |
|- C = ( A |`s D ) |
8 |
1 2 3 4 5 6 7
|
scmatsgrp1 |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubGrp ` C ) ) |
9 |
1 2 4 6
|
dmatsrng |
|- ( ( R e. Ring /\ N e. Fin ) -> D e. ( SubRing ` A ) ) |
10 |
9
|
ancoms |
|- ( ( N e. Fin /\ R e. Ring ) -> D e. ( SubRing ` A ) ) |
11 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
12 |
7 11
|
subrg1 |
|- ( D e. ( SubRing ` A ) -> ( 1r ` A ) = ( 1r ` C ) ) |
13 |
10 12
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( 1r ` C ) ) |
14 |
13
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( 1r ` A ) ) |
15 |
1 2 3 4 5
|
scmatid |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. S ) |
16 |
14 15
|
eqeltrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) e. S ) |
17 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
18 |
7 17
|
ressmulr |
|- ( D e. ( SubRing ` A ) -> ( .r ` A ) = ( .r ` C ) ) |
19 |
10 18
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( .r ` A ) = ( .r ` C ) ) |
20 |
19
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( .r ` C ) = ( .r ` A ) ) |
21 |
20
|
oveqdr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. S /\ y e. S ) ) -> ( x ( .r ` C ) y ) = ( x ( .r ` A ) y ) ) |
22 |
1 2 3 4 5
|
scmatmulcl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. S /\ y e. S ) ) -> ( x ( .r ` A ) y ) e. S ) |
23 |
21 22
|
eqeltrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. S /\ y e. S ) ) -> ( x ( .r ` C ) y ) e. S ) |
24 |
23
|
ralrimivva |
|- ( ( N e. Fin /\ R e. Ring ) -> A. x e. S A. y e. S ( x ( .r ` C ) y ) e. S ) |
25 |
7
|
subrgring |
|- ( D e. ( SubRing ` A ) -> C e. Ring ) |
26 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
27 |
|
eqid |
|- ( 1r ` C ) = ( 1r ` C ) |
28 |
|
eqid |
|- ( .r ` C ) = ( .r ` C ) |
29 |
26 27 28
|
issubrg2 |
|- ( C e. Ring -> ( S e. ( SubRing ` C ) <-> ( S e. ( SubGrp ` C ) /\ ( 1r ` C ) e. S /\ A. x e. S A. y e. S ( x ( .r ` C ) y ) e. S ) ) ) |
30 |
10 25 29
|
3syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( S e. ( SubRing ` C ) <-> ( S e. ( SubGrp ` C ) /\ ( 1r ` C ) e. S /\ A. x e. S A. y e. S ( x ( .r ` C ) y ) e. S ) ) ) |
31 |
8 16 24 30
|
mpbir3and |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) ) |