| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | scmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | scmatid.e | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | scmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | scmatid.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 6 |  | scmatsgrp1.d | ⊢ 𝐷  =  ( 𝑁  DMat  𝑅 ) | 
						
							| 7 |  | scmatsgrp1.c | ⊢ 𝐶  =  ( 𝐴  ↾s  𝐷 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | scmatsgrp1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubGrp ‘ 𝐶 ) ) | 
						
							| 9 | 1 2 4 6 | dmatsrng | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubRing ‘ 𝐴 ) ) | 
						
							| 10 | 9 | ancoms | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐷  ∈  ( SubRing ‘ 𝐴 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 12 | 7 11 | subrg1 | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐶 ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐶 ) ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐶 )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 15 | 1 2 3 4 5 | scmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝑆 ) | 
						
							| 16 | 14 15 | eqeltrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐶 )  ∈  𝑆 ) | 
						
							| 17 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 18 | 7 17 | ressmulr | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐶 ) ) | 
						
							| 19 | 10 18 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐶 ) ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 21 | 20 | oveqdr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) | 
						
							| 22 | 1 2 3 4 5 | scmatmulcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 23 | 21 22 | eqeltrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 24 | 23 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 25 | 7 | subrgring | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  𝐶  ∈  Ring ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 27 |  | eqid | ⊢ ( 1r ‘ 𝐶 )  =  ( 1r ‘ 𝐶 ) | 
						
							| 28 |  | eqid | ⊢ ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐶 ) | 
						
							| 29 | 26 27 28 | issubrg2 | ⊢ ( 𝐶  ∈  Ring  →  ( 𝑆  ∈  ( SubRing ‘ 𝐶 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐶 )  ∧  ( 1r ‘ 𝐶 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 30 | 10 25 29 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑆  ∈  ( SubRing ‘ 𝐶 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐶 )  ∧  ( 1r ‘ 𝐶 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 31 | 8 16 24 30 | mpbir3and | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubRing ‘ 𝐶 ) ) |