| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | dmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | dmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | dmatid.d | ⊢ 𝐷  =  ( 𝑁  DMat  𝑅 ) | 
						
							| 5 | 1 2 3 4 | dmatsgrp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubGrp ‘ 𝐴 ) ) | 
						
							| 6 | 1 2 3 4 | dmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ( 1r ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 8 | 1 2 3 4 | dmatmulcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) | 
						
							| 9 | 8 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) | 
						
							| 10 | 9 | ancoms | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) | 
						
							| 11 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 12 | 11 | ancoms | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐴  ∈  Ring ) | 
						
							| 13 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 14 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 15 | 2 13 14 | issubrg2 | ⊢ ( 𝐴  ∈  Ring  →  ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  ↔  ( 𝐷  ∈  ( SubGrp ‘ 𝐴 )  ∧  ( 1r ‘ 𝐴 )  ∈  𝐷  ∧  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) ) ) | 
						
							| 16 | 12 15 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  ↔  ( 𝐷  ∈  ( SubGrp ‘ 𝐴 )  ∧  ( 1r ‘ 𝐴 )  ∈  𝐷  ∧  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) ) ) | 
						
							| 17 | 5 7 10 16 | mpbir3and | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubRing ‘ 𝐴 ) ) |