| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | dmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | dmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | dmatid.d | ⊢ 𝐷  =  ( 𝑁  DMat  𝑅 ) | 
						
							| 5 | 1 2 3 4 | dmatmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑧  ∈  𝐷  →  𝑧  ∈  𝐵 ) ) | 
						
							| 6 | 5 | ancoms | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ( 𝑧  ∈  𝐷  →  𝑧  ∈  𝐵 ) ) | 
						
							| 7 | 6 | ssrdv | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ⊆  𝐵 ) | 
						
							| 8 | 1 2 3 4 | dmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 9 | 8 | ancoms | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ( 1r ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 10 | 9 | ne0d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ≠  ∅ ) | 
						
							| 11 | 1 2 3 4 | dmatsubcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) | 
						
							| 12 | 11 | ancom1s | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) | 
						
							| 13 | 12 | ralrimivva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) | 
						
							| 14 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 15 | 14 | ancoms | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐴  ∈  Ring ) | 
						
							| 16 |  | ringgrp | ⊢ ( 𝐴  ∈  Ring  →  𝐴  ∈  Grp ) | 
						
							| 17 |  | eqid | ⊢ ( -g ‘ 𝐴 )  =  ( -g ‘ 𝐴 ) | 
						
							| 18 | 2 17 | issubg4 | ⊢ ( 𝐴  ∈  Grp  →  ( 𝐷  ∈  ( SubGrp ‘ 𝐴 )  ↔  ( 𝐷  ⊆  𝐵  ∧  𝐷  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) ) ) | 
						
							| 19 | 15 16 18 | 3syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ( 𝐷  ∈  ( SubGrp ‘ 𝐴 )  ↔  ( 𝐷  ⊆  𝐵  ∧  𝐷  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝐷 ) ) ) | 
						
							| 20 | 7 10 13 19 | mpbir3and | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubGrp ‘ 𝐴 ) ) |