Metamath Proof Explorer


Theorem dmatsgrp

Description: The set of diagonal matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 19-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A=NMatR
dmatid.b B=BaseA
dmatid.0 0˙=0R
dmatid.d D=NDMatR
Assertion dmatsgrp RRingNFinDSubGrpA

Proof

Step Hyp Ref Expression
1 dmatid.a A=NMatR
2 dmatid.b B=BaseA
3 dmatid.0 0˙=0R
4 dmatid.d D=NDMatR
5 1 2 3 4 dmatmat NFinRRingzDzB
6 5 ancoms RRingNFinzDzB
7 6 ssrdv RRingNFinDB
8 1 2 3 4 dmatid NFinRRing1AD
9 8 ancoms RRingNFin1AD
10 9 ne0d RRingNFinD
11 1 2 3 4 dmatsubcl NFinRRingxDyDx-AyD
12 11 ancom1s RRingNFinxDyDx-AyD
13 12 ralrimivva RRingNFinxDyDx-AyD
14 1 matring NFinRRingARing
15 14 ancoms RRingNFinARing
16 ringgrp ARingAGrp
17 eqid -A=-A
18 2 17 issubg4 AGrpDSubGrpADBDxDyDx-AyD
19 15 16 18 3syl RRingNFinDSubGrpADBDxDyDx-AyD
20 7 10 13 19 mpbir3and RRingNFinDSubGrpA