| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | dmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | dmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | dmatid.d | ⊢ 𝐷  =  ( 𝑁  DMat  𝑅 ) | 
						
							| 5 |  | oveq | ⊢ ( 𝑚  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) )  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) 𝑗 ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑚  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) )  →  ( ( 𝑖 𝑚 𝑗 )  =   0   ↔  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) 𝑗 )  =   0  ) ) | 
						
							| 7 | 6 | imbi2d | ⊢ ( 𝑚  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) )  →  ( ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  )  ↔  ( 𝑖  ≠  𝑗  →  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) 𝑗 )  =   0  ) ) ) | 
						
							| 8 | 7 | 2ralbidv | ⊢ ( 𝑚  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) 𝑗 )  =   0  ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 10 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  𝑁  ∈  Fin ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  𝑅  ∈  Ring ) | 
						
							| 12 | 11 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 14 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  𝑥  ∈  𝑁 ) | 
						
							| 15 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  𝑦  ∈  𝑁 ) | 
						
							| 16 | 1 13 3 4 | dmatmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑋  ∈  𝐷  →  𝑋  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑋  ∈  𝐷 )  →  𝑋  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 18 | 17 | adantrr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  𝑋  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 19 | 18 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  𝑋  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 20 | 1 9 13 14 15 19 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  ( 𝑥 𝑋 𝑦 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 1 13 3 4 | dmatmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑌  ∈  𝐷  →  𝑌  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑌  ∈  𝐷 )  →  𝑌  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 23 | 22 | adantrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  𝑌  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  𝑌  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 25 | 1 9 13 14 15 24 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  ( 𝑥 𝑌 𝑦 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 27 | 9 26 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥 𝑋 𝑦 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑥 𝑌 𝑦 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 28 | 12 20 25 27 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 9 3 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 33 | 28 32 | ifcld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 34 | 1 9 2 10 11 33 | matbas2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) )  ∈  𝐵 ) | 
						
							| 35 |  | eqidd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑖  ≠  𝑗 )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) ) | 
						
							| 36 |  | eqeq12 | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( 𝑥  =  𝑦  ↔  𝑖  =  𝑗 ) ) | 
						
							| 37 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( 𝑥 𝑋 𝑦 )  =  ( 𝑖 𝑋 𝑗 ) ) | 
						
							| 38 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( 𝑥 𝑌 𝑦 )  =  ( 𝑖 𝑌 𝑗 ) ) | 
						
							| 39 | 37 38 | oveq12d | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) )  =  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ) | 
						
							| 40 | 36 39 | ifbieq1d | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  )  =  if ( 𝑖  =  𝑗 ,  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ,   0  ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 ) )  →  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  )  =  if ( 𝑖  =  𝑗 ,  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ,   0  ) ) | 
						
							| 42 |  | simplrl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑖  ≠  𝑗 )  →  𝑖  ∈  𝑁 ) | 
						
							| 43 |  | simplrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑖  ≠  𝑗 )  →  𝑗  ∈  𝑁 ) | 
						
							| 44 |  | ovex | ⊢ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) )  ∈  V | 
						
							| 45 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 46 | 44 45 | ifex | ⊢ if ( 𝑖  =  𝑗 ,  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ,   0  )  ∈  V | 
						
							| 47 | 46 | a1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑖  ≠  𝑗 )  →  if ( 𝑖  =  𝑗 ,  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ,   0  )  ∈  V ) | 
						
							| 48 | 35 41 42 43 47 | ovmpod | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑖  ≠  𝑗 )  →  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) 𝑗 )  =  if ( 𝑖  =  𝑗 ,  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ,   0  ) ) | 
						
							| 49 |  | ifnefalse | ⊢ ( 𝑖  ≠  𝑗  →  if ( 𝑖  =  𝑗 ,  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ,   0  )  =   0  ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑖  ≠  𝑗 )  →  if ( 𝑖  =  𝑗 ,  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑖 𝑌 𝑗 ) ) ,   0  )  =   0  ) | 
						
							| 51 | 48 50 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑖  ≠  𝑗 )  →  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) 𝑗 )  =   0  ) | 
						
							| 52 | 51 | ex | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖  ≠  𝑗  →  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) 𝑗 )  =   0  ) ) | 
						
							| 53 | 52 | ralrimivva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) 𝑗 )  =   0  ) ) | 
						
							| 54 | 8 34 53 | elrabd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) )  ∈  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) | 
						
							| 55 | 1 2 3 4 | dmatmul | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  ( 𝑋 ( .r ‘ 𝐴 ) 𝑌 )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  if ( 𝑥  =  𝑦 ,  ( ( 𝑥 𝑋 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑥 𝑌 𝑦 ) ) ,   0  ) ) ) | 
						
							| 56 | 1 2 3 4 | dmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐷  =  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  𝐷  =  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) | 
						
							| 58 | 54 55 57 | 3eltr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) )  →  ( 𝑋 ( .r ‘ 𝐴 ) 𝑌 )  ∈  𝐷 ) |