Metamath Proof Explorer


Theorem dmatsrng

Description: The set of diagonal matrices is a subring of the matrix ring/algebra. (Contributed by AV, 20-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A=NMatR
dmatid.b B=BaseA
dmatid.0 0˙=0R
dmatid.d D=NDMatR
Assertion dmatsrng RRingNFinDSubRingA

Proof

Step Hyp Ref Expression
1 dmatid.a A=NMatR
2 dmatid.b B=BaseA
3 dmatid.0 0˙=0R
4 dmatid.d D=NDMatR
5 1 2 3 4 dmatsgrp RRingNFinDSubGrpA
6 1 2 3 4 dmatid NFinRRing1AD
7 6 ancoms RRingNFin1AD
8 1 2 3 4 dmatmulcl NFinRRingxDyDxAyD
9 8 ralrimivva NFinRRingxDyDxAyD
10 9 ancoms RRingNFinxDyDxAyD
11 1 matring NFinRRingARing
12 11 ancoms RRingNFinARing
13 eqid 1A=1A
14 eqid A=A
15 2 13 14 issubrg2 ARingDSubRingADSubGrpA1ADxDyDxAyD
16 12 15 syl RRingNFinDSubRingADSubGrpA1ADxDyDxAyD
17 5 7 10 16 mpbir3and RRingNFinDSubRingA