Metamath Proof Explorer


Theorem dmatcrng

Description: The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A = N Mat R
dmatid.b B = Base A
dmatid.0 0 ˙ = 0 R
dmatid.d D = N DMat R
dmatcrng.c C = A 𝑠 D
Assertion dmatcrng R CRing N Fin C CRing

Proof

Step Hyp Ref Expression
1 dmatid.a A = N Mat R
2 dmatid.b B = Base A
3 dmatid.0 0 ˙ = 0 R
4 dmatid.d D = N DMat R
5 dmatcrng.c C = A 𝑠 D
6 crngring R CRing R Ring
7 1 2 3 4 dmatsrng R Ring N Fin D SubRing A
8 6 7 sylan R CRing N Fin D SubRing A
9 5 subrgring D SubRing A C Ring
10 8 9 syl R CRing N Fin C Ring
11 simp1lr N Fin R CRing x D y D a N b N R CRing
12 eqid Base R = Base R
13 eqid Base A = Base A
14 simp2 N Fin R CRing x D y D a N b N a N
15 simp3 N Fin R CRing x D y D a N b N b N
16 1 13 3 4 dmatmat N Fin R CRing x D x Base A
17 16 imp N Fin R CRing x D x Base A
18 17 adantrr N Fin R CRing x D y D x Base A
19 18 3ad2ant1 N Fin R CRing x D y D a N b N x Base A
20 1 12 13 14 15 19 matecld N Fin R CRing x D y D a N b N a x b Base R
21 1 13 3 4 dmatmat N Fin R CRing y D y Base A
22 21 imp N Fin R CRing y D y Base A
23 22 adantrl N Fin R CRing x D y D y Base A
24 23 3ad2ant1 N Fin R CRing x D y D a N b N y Base A
25 1 12 13 14 15 24 matecld N Fin R CRing x D y D a N b N a y b Base R
26 eqid R = R
27 12 26 crngcom R CRing a x b Base R a y b Base R a x b R a y b = a y b R a x b
28 11 20 25 27 syl3anc N Fin R CRing x D y D a N b N a x b R a y b = a y b R a x b
29 28 ifeq1d N Fin R CRing x D y D a N b N if a = b a x b R a y b 0 ˙ = if a = b a y b R a x b 0 ˙
30 29 mpoeq3dva N Fin R CRing x D y D a N , b N if a = b a x b R a y b 0 ˙ = a N , b N if a = b a y b R a x b 0 ˙
31 6 anim2i N Fin R CRing N Fin R Ring
32 1 2 3 4 dmatmul N Fin R Ring x D y D x A y = a N , b N if a = b a x b R a y b 0 ˙
33 31 32 sylan N Fin R CRing x D y D x A y = a N , b N if a = b a x b R a y b 0 ˙
34 pm3.22 x D y D y D x D
35 1 2 3 4 dmatmul N Fin R Ring y D x D y A x = a N , b N if a = b a y b R a x b 0 ˙
36 31 34 35 syl2an N Fin R CRing x D y D y A x = a N , b N if a = b a y b R a x b 0 ˙
37 30 33 36 3eqtr4d N Fin R CRing x D y D x A y = y A x
38 37 ralrimivva N Fin R CRing x D y D x A y = y A x
39 38 ancoms R CRing N Fin x D y D x A y = y A x
40 5 subrgbas D SubRing A D = Base C
41 40 eqcomd D SubRing A Base C = D
42 eqid A = A
43 5 42 ressmulr D SubRing A A = C
44 43 eqcomd D SubRing A C = A
45 44 oveqd D SubRing A x C y = x A y
46 44 oveqd D SubRing A y C x = y A x
47 45 46 eqeq12d D SubRing A x C y = y C x x A y = y A x
48 41 47 raleqbidv D SubRing A y Base C x C y = y C x y D x A y = y A x
49 41 48 raleqbidv D SubRing A x Base C y Base C x C y = y C x x D y D x A y = y A x
50 8 49 syl R CRing N Fin x Base C y Base C x C y = y C x x D y D x A y = y A x
51 39 50 mpbird R CRing N Fin x Base C y Base C x C y = y C x
52 eqid Base C = Base C
53 eqid C = C
54 52 53 iscrng2 C CRing C Ring x Base C y Base C x C y = y C x
55 10 51 54 sylanbrc R CRing N Fin C CRing