| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | dmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | dmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | dmatid.d | ⊢ 𝐷  =  ( 𝑁  DMat  𝑅 ) | 
						
							| 5 |  | dmatcrng.c | ⊢ 𝐶  =  ( 𝐴  ↾s  𝐷 ) | 
						
							| 6 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 7 | 1 2 3 4 | dmatsrng | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubRing ‘ 𝐴 ) ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubRing ‘ 𝐴 ) ) | 
						
							| 9 | 5 | subrgring | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  𝐶  ∈  Ring ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  𝐶  ∈  Ring ) | 
						
							| 11 |  | simp1lr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑅  ∈  CRing ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 14 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑎  ∈  𝑁 ) | 
						
							| 15 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑏  ∈  𝑁 ) | 
						
							| 16 | 1 13 3 4 | dmatmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑥  ∈  𝐷  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 18 | 17 | adantrr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 19 | 18 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 20 | 1 12 13 14 15 19 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 𝑥 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 1 13 3 4 | dmatmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑦  ∈  𝐷  →  𝑦  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 23 | 22 | adantrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝑦  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑦  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 25 | 1 12 13 14 15 24 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 𝑦 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 27 | 12 26 | crngcom | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝑎 𝑥 𝑏 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑎 𝑦 𝑏 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) )  =  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ) | 
						
							| 28 | 11 20 25 27 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) )  =  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ) | 
						
							| 29 | 28 | ifeq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) ,   0  )  =  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ,   0  ) ) | 
						
							| 30 | 29 | mpoeq3dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) ,   0  ) )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ,   0  ) ) ) | 
						
							| 31 | 6 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 32 | 1 2 3 4 | dmatmul | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) ,   0  ) ) ) | 
						
							| 33 | 31 32 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) ,   0  ) ) ) | 
						
							| 34 |  | pm3.22 | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  ( 𝑦  ∈  𝐷  ∧  𝑥  ∈  𝐷 ) ) | 
						
							| 35 | 1 2 3 4 | dmatmul | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐷  ∧  𝑥  ∈  𝐷 ) )  →  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ,   0  ) ) ) | 
						
							| 36 | 31 34 35 | syl2an | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  if ( 𝑎  =  𝑏 ,  ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ,   0  ) ) ) | 
						
							| 37 | 30 33 36 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) | 
						
							| 38 | 37 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) | 
						
							| 39 | 38 | ancoms | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) | 
						
							| 40 | 5 | subrgbas | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  𝐷  =  ( Base ‘ 𝐶 ) ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( Base ‘ 𝐶 )  =  𝐷 ) | 
						
							| 42 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 43 | 5 42 | ressmulr | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐶 ) ) | 
						
							| 44 | 43 | eqcomd | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 45 | 44 | oveqd | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) | 
						
							| 46 | 44 | oveqd | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) | 
						
							| 47 | 45 46 | eqeq12d | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  ↔  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 48 | 41 47 | raleqbidv | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  ↔  ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 49 | 41 48 | raleqbidv | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  ↔  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 50 | 8 49 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 )  ↔  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 51 | 39 50 | mpbird | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 52 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 53 |  | eqid | ⊢ ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐶 ) | 
						
							| 54 | 52 53 | iscrng2 | ⊢ ( 𝐶  ∈  CRing  ↔  ( 𝐶  ∈  Ring  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) ) ) | 
						
							| 55 | 10 51 54 | sylanbrc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  →  𝐶  ∈  CRing ) |