| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmatid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
dmatid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
dmatid.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
dmatid.d |
⊢ 𝐷 = ( 𝑁 DMat 𝑅 ) |
| 5 |
|
dmatcrng.c |
⊢ 𝐶 = ( 𝐴 ↾s 𝐷 ) |
| 6 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 7 |
1 2 3 4
|
dmatsrng |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → 𝐷 ∈ ( SubRing ‘ 𝐴 ) ) |
| 8 |
6 7
|
sylan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝐷 ∈ ( SubRing ‘ 𝐴 ) ) |
| 9 |
5
|
subrgring |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → 𝐶 ∈ Ring ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝐶 ∈ Ring ) |
| 11 |
|
simp1lr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 14 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) |
| 15 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑏 ∈ 𝑁 ) |
| 16 |
1 13 3 4
|
dmatmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ( Base ‘ 𝐴 ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 18 |
17
|
adantrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 20 |
1 12 13 14 15 19
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑎 𝑥 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 21 |
1 13 3 4
|
dmatmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑦 ∈ 𝐷 → 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 23 |
22
|
adantrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 25 |
1 12 13 14 15 24
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑎 𝑦 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 27 |
12 26
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑎 𝑥 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑎 𝑦 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) = ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ) |
| 28 |
11 20 25 27
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) = ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) ) |
| 29 |
28
|
ifeq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝑏 , ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) , 0 ) = if ( 𝑎 = 𝑏 , ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) , 0 ) ) |
| 30 |
29
|
mpoeq3dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑏 , ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) , 0 ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑏 , ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) , 0 ) ) ) |
| 31 |
6
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 32 |
1 2 3 4
|
dmatmul |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑏 , ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) , 0 ) ) ) |
| 33 |
31 32
|
sylan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑏 , ( ( 𝑎 𝑥 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑦 𝑏 ) ) , 0 ) ) ) |
| 34 |
|
pm3.22 |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷 ) ) |
| 35 |
1 2 3 4
|
dmatmul |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷 ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑏 , ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) , 0 ) ) ) |
| 36 |
31 34 35
|
syl2an |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑏 , ( ( 𝑎 𝑦 𝑏 ) ( .r ‘ 𝑅 ) ( 𝑎 𝑥 𝑏 ) ) , 0 ) ) ) |
| 37 |
30 33 36
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
| 38 |
37
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
| 39 |
38
|
ancoms |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
| 40 |
5
|
subrgbas |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → 𝐷 = ( Base ‘ 𝐶 ) ) |
| 41 |
40
|
eqcomd |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( Base ‘ 𝐶 ) = 𝐷 ) |
| 42 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 43 |
5 42
|
ressmulr |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( .r ‘ 𝐴 ) = ( .r ‘ 𝐶 ) ) |
| 44 |
43
|
eqcomd |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( .r ‘ 𝐶 ) = ( .r ‘ 𝐴 ) ) |
| 45 |
44
|
oveqd |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
| 46 |
44
|
oveqd |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
| 47 |
45 46
|
eqeq12d |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) ↔ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 48 |
41 47
|
raleqbidv |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 49 |
41 48
|
raleqbidv |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 50 |
8 49
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 51 |
39 50
|
mpbird |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) ) |
| 52 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 53 |
|
eqid |
⊢ ( .r ‘ 𝐶 ) = ( .r ‘ 𝐶 ) |
| 54 |
52 53
|
iscrng2 |
⊢ ( 𝐶 ∈ CRing ↔ ( 𝐶 ∈ Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐶 ) 𝑥 ) ) ) |
| 55 |
10 51 54
|
sylanbrc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝐶 ∈ CRing ) |