| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | scmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | scmatid.e | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | scmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | scmatid.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 6 |  | scmatsgrp1.d | ⊢ 𝐷  =  ( 𝑁  DMat  𝑅 ) | 
						
							| 7 |  | scmatsgrp1.c | ⊢ 𝐶  =  ( 𝐴  ↾s  𝐷 ) | 
						
							| 8 | 1 2 3 4 5 6 | scmatdmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑥  ∈  𝑆  →  𝑥  ∈  𝐷 ) ) | 
						
							| 9 | 8 | ssrdv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ⊆  𝐷 ) | 
						
							| 10 | 1 2 4 6 | dmatsgrp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubGrp ‘ 𝐴 ) ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐷  ∈  ( SubGrp ‘ 𝐴 ) ) | 
						
							| 12 | 7 | subgbas | ⊢ ( 𝐷  ∈  ( SubGrp ‘ 𝐴 )  →  𝐷  =  ( Base ‘ 𝐶 ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝐷  ∈  ( SubGrp ‘ 𝐴 )  →  ( Base ‘ 𝐶 )  =  𝐷 ) | 
						
							| 14 | 11 13 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝐶 )  =  𝐷 ) | 
						
							| 15 | 9 14 | sseqtrrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ⊆  ( Base ‘ 𝐶 ) ) | 
						
							| 16 | 1 2 3 4 5 | scmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝑆 ) | 
						
							| 17 | 16 | ne0d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ≠  ∅ ) | 
						
							| 18 | 11 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝐷  ∈  ( SubGrp ‘ 𝐴 ) ) | 
						
							| 19 | 8 | com12 | ⊢ ( 𝑥  ∈  𝑆  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑥  ∈  𝐷 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑥  ∈  𝐷 ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 22 | 1 2 3 4 5 6 | scmatdmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑦  ∈  𝑆  →  𝑦  ∈  𝐷 ) ) | 
						
							| 23 | 22 | a1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑥  ∈  𝑆  →  ( 𝑦  ∈  𝑆  →  𝑦  ∈  𝐷 ) ) ) | 
						
							| 24 | 23 | imp32 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑦  ∈  𝐷 ) | 
						
							| 25 |  | eqid | ⊢ ( -g ‘ 𝐴 )  =  ( -g ‘ 𝐴 ) | 
						
							| 26 |  | eqid | ⊢ ( -g ‘ 𝐶 )  =  ( -g ‘ 𝐶 ) | 
						
							| 27 | 25 7 26 | subgsub | ⊢ ( ( 𝐷  ∈  ( SubGrp ‘ 𝐴 )  ∧  𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  =  ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( ( 𝐷  ∈  ( SubGrp ‘ 𝐴 )  ∧  𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 )  =  ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ) | 
						
							| 29 | 18 21 24 28 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 )  =  ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ) | 
						
							| 30 | 1 2 3 4 5 | scmatsubcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 31 | 29 30 | eqeltrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 32 | 31 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 33 | 1 2 4 6 | dmatsrng | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  𝐷  ∈  ( SubRing ‘ 𝐴 ) ) | 
						
							| 34 | 33 | ancoms | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐷  ∈  ( SubRing ‘ 𝐴 ) ) | 
						
							| 35 | 7 | subrgring | ⊢ ( 𝐷  ∈  ( SubRing ‘ 𝐴 )  →  𝐶  ∈  Ring ) | 
						
							| 36 |  | ringgrp | ⊢ ( 𝐶  ∈  Ring  →  𝐶  ∈  Grp ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 38 | 37 26 | issubg4 | ⊢ ( 𝐶  ∈  Grp  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐶 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝐶 )  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 39 | 34 35 36 38 | 4syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐶 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝐶 )  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 40 | 15 17 32 39 | mpbir3and | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubGrp ‘ 𝐶 ) ) |