Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
scmatid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
scmatid.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
4 |
|
scmatid.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
scmatid.s |
⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) |
6 |
|
scmatsgrp1.d |
⊢ 𝐷 = ( 𝑁 DMat 𝑅 ) |
7 |
|
scmatsgrp1.c |
⊢ 𝐶 = ( 𝐴 ↾s 𝐷 ) |
8 |
1 2 3 4 5 6
|
scmatdmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐷 ) ) |
9 |
8
|
ssrdv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ⊆ 𝐷 ) |
10 |
1 2 4 6
|
dmatsgrp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → 𝐷 ∈ ( SubGrp ‘ 𝐴 ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐷 ∈ ( SubGrp ‘ 𝐴 ) ) |
12 |
7
|
subgbas |
⊢ ( 𝐷 ∈ ( SubGrp ‘ 𝐴 ) → 𝐷 = ( Base ‘ 𝐶 ) ) |
13 |
12
|
eqcomd |
⊢ ( 𝐷 ∈ ( SubGrp ‘ 𝐴 ) → ( Base ‘ 𝐶 ) = 𝐷 ) |
14 |
11 13
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝐶 ) = 𝐷 ) |
15 |
9 14
|
sseqtrrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
16 |
1 2 3 4 5
|
scmatid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) ∈ 𝑆 ) |
17 |
16
|
ne0d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ≠ ∅ ) |
18 |
11
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐷 ∈ ( SubGrp ‘ 𝐴 ) ) |
19 |
8
|
com12 |
⊢ ( 𝑥 ∈ 𝑆 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑥 ∈ 𝐷 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑥 ∈ 𝐷 ) ) |
21 |
20
|
impcom |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝐷 ) |
22 |
1 2 3 4 5 6
|
scmatdmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐷 ) ) |
23 |
22
|
a1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ 𝑆 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐷 ) ) ) |
24 |
23
|
imp32 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝐷 ) |
25 |
|
eqid |
⊢ ( -g ‘ 𝐴 ) = ( -g ‘ 𝐴 ) |
26 |
|
eqid |
⊢ ( -g ‘ 𝐶 ) = ( -g ‘ 𝐶 ) |
27 |
25 7 26
|
subgsub |
⊢ ( ( 𝐷 ∈ ( SubGrp ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 ) ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝐷 ∈ ( SubGrp ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ) |
29 |
18 21 24 28
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ) |
30 |
1 2 3 4 5
|
scmatsubcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ∈ 𝑆 ) |
31 |
29 30
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) |
32 |
31
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) |
33 |
1 2 4 6
|
dmatsrng |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → 𝐷 ∈ ( SubRing ‘ 𝐴 ) ) |
34 |
33
|
ancoms |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐷 ∈ ( SubRing ‘ 𝐴 ) ) |
35 |
7
|
subrgring |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → 𝐶 ∈ Ring ) |
36 |
34 35
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
37 |
|
ringgrp |
⊢ ( 𝐶 ∈ Ring → 𝐶 ∈ Grp ) |
38 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
39 |
38 26
|
issubg4 |
⊢ ( 𝐶 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐶 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) ) ) |
40 |
36 37 39
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐶 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( -g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) ) ) |
41 |
15 17 32 40
|
mpbir3and |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ) |