| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 2 | 1 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 3 |  | chpcl |  |-  ( x e. RR -> ( psi ` x ) e. RR ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. RR ) | 
						
							| 5 |  | 1rp |  |-  1 e. RR+ | 
						
							| 6 | 5 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 7 |  | 1red |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 8 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 10 | 9 | simpld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 11 | 7 2 10 | ltled |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 12 | 2 6 11 | rpgecld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 13 | 12 | relogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 14 | 4 13 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) | 
						
							| 16 |  | fzfid |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 17 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 19 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 21 | 2 | adantr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 22 | 21 18 | nndivred |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 23 |  | chpcl |  |-  ( ( x / n ) e. RR -> ( psi ` ( x / n ) ) e. RR ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. RR ) | 
						
							| 25 | 20 24 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. RR ) | 
						
							| 26 | 16 25 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. RR ) | 
						
							| 27 | 26 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) | 
						
							| 28 |  | 2re |  |-  2 e. RR | 
						
							| 29 | 28 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) | 
						
							| 30 | 2 10 | rplogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 31 | 29 30 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) | 
						
							| 32 | 18 | nnrpd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 33 | 32 | relogcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 34 | 25 33 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 35 | 16 34 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 36 | 31 35 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 37 | 36 26 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. RR ) | 
						
							| 38 | 37 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. CC ) | 
						
							| 39 | 15 27 38 | addassd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) ) ) | 
						
							| 40 |  | 2cnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) | 
						
							| 41 | 13 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 42 | 30 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 43 | 40 41 42 | divcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) | 
						
							| 44 | 35 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 45 | 43 44 | mulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. CC ) | 
						
							| 46 | 27 45 | pncan3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 48 | 39 47 | eqtr2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) ) | 
						
							| 49 | 48 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) / x ) ) | 
						
							| 50 | 14 26 | readdcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. RR ) | 
						
							| 51 | 50 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. CC ) | 
						
							| 52 | 2 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) | 
						
							| 53 | 12 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) | 
						
							| 54 | 51 38 52 53 | divdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) | 
						
							| 55 | 49 54 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) | 
						
							| 56 | 55 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 57 | 50 12 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. RR ) | 
						
							| 58 | 57 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. CC ) | 
						
							| 59 | 37 12 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. RR ) | 
						
							| 60 | 59 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. CC ) | 
						
							| 61 | 29 13 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. RR ) | 
						
							| 62 | 61 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. CC ) | 
						
							| 63 | 58 60 62 | addsubd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) | 
						
							| 64 | 56 63 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) | 
						
							| 65 | 64 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) ) | 
						
							| 66 | 57 61 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) | 
						
							| 67 | 12 | ex |  |-  ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) | 
						
							| 68 | 67 | ssrdv |  |-  ( T. -> ( 1 (,) +oo ) C_ RR+ ) | 
						
							| 69 |  | selberg2 |  |-  ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) | 
						
							| 70 | 69 | a1i |  |-  ( T. -> ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 71 | 68 70 | o1res2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 72 |  | selberg3lem2 |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) e. O(1) | 
						
							| 73 | 72 | a1i |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) e. O(1) ) | 
						
							| 74 | 66 59 71 73 | o1add2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) e. O(1) ) | 
						
							| 75 | 65 74 | eqeltrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 76 | 75 | mptru |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |