Step |
Hyp |
Ref |
Expression |
1 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
2 |
1
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
3 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
4 |
2 3
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. RR ) |
5 |
|
1rp |
|- 1 e. RR+ |
6 |
5
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
7 |
|
1red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
8 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
9 |
8
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
10 |
9
|
simpld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
11 |
7 2 10
|
ltled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
12 |
2 6 11
|
rpgecld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
13 |
12
|
relogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
14 |
4 13
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. RR ) |
15 |
14
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) |
16 |
|
fzfid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
17 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
18 |
17
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
19 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
20 |
18 19
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
21 |
2
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
22 |
21 18
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
23 |
|
chpcl |
|- ( ( x / n ) e. RR -> ( psi ` ( x / n ) ) e. RR ) |
24 |
22 23
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. RR ) |
25 |
20 24
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. RR ) |
26 |
16 25
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. RR ) |
27 |
26
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) |
28 |
|
2re |
|- 2 e. RR |
29 |
28
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
30 |
2 10
|
rplogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
31 |
29 30
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
32 |
18
|
nnrpd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
33 |
32
|
relogcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
34 |
25 33
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
35 |
16 34
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
36 |
31 35
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. RR ) |
37 |
36 26
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. RR ) |
38 |
37
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. CC ) |
39 |
15 27 38
|
addassd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) ) ) |
40 |
|
2cnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
41 |
13
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
42 |
30
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
43 |
40 41 42
|
divcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) |
44 |
35
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) |
45 |
43 44
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. CC ) |
46 |
27 45
|
pncan3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
47 |
46
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
48 |
39 47
|
eqtr2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) ) |
49 |
48
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) / x ) ) |
50 |
14 26
|
readdcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. RR ) |
51 |
50
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. CC ) |
52 |
2
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
53 |
12
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
54 |
51 38 52 53
|
divdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) |
55 |
49 54
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) |
56 |
55
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) ) |
57 |
50 12
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. RR ) |
58 |
57
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. CC ) |
59 |
37 12
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. RR ) |
60 |
59
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. CC ) |
61 |
29 13
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. RR ) |
62 |
61
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. CC ) |
63 |
58 60 62
|
addsubd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) |
64 |
56 63
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) |
65 |
64
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) ) |
66 |
57 61
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) |
67 |
12
|
ex |
|- ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) |
68 |
67
|
ssrdv |
|- ( T. -> ( 1 (,) +oo ) C_ RR+ ) |
69 |
|
selberg2 |
|- ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
70 |
69
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
71 |
68 70
|
o1res2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
72 |
|
selberg3lem2 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) e. O(1) |
73 |
72
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) e. O(1) ) |
74 |
66 59 71 73
|
o1add2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) + ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) e. O(1) ) |
75 |
65 74
|
eqeltrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
76 |
75
|
mptru |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |