| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. RR ) |
| 2 |
|
0red |
|- ( ( A e. RR /\ A =/= 0 ) -> 0 e. RR ) |
| 3 |
1
|
recnd |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. CC ) |
| 4 |
3
|
adantr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> A e. CC ) |
| 5 |
|
simplr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> A =/= 0 ) |
| 6 |
4 4 5
|
divneg2d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> -u ( A / A ) = ( A / -u A ) ) |
| 7 |
|
simpr |
|- ( ( A e. RR /\ A =/= 0 ) -> A =/= 0 ) |
| 8 |
3 7
|
dividd |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A / A ) = 1 ) |
| 9 |
8
|
adantr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> ( A / A ) = 1 ) |
| 10 |
9
|
negeqd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> -u ( A / A ) = -u 1 ) |
| 11 |
6 10
|
eqtr3d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> ( A / -u A ) = -u 1 ) |
| 12 |
|
absnid |
|- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
| 13 |
12
|
adantlr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
| 14 |
13
|
oveq2d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> ( A / ( abs ` A ) ) = ( A / -u A ) ) |
| 15 |
1
|
rexrd |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. RR* ) |
| 16 |
1
|
adantr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> A e. RR ) |
| 17 |
|
0red |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> 0 e. RR ) |
| 18 |
|
simpr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> A <_ 0 ) |
| 19 |
7
|
necomd |
|- ( ( A e. RR /\ A =/= 0 ) -> 0 =/= A ) |
| 20 |
19
|
adantr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> 0 =/= A ) |
| 21 |
16 17 18 20
|
leneltd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> A < 0 ) |
| 22 |
|
sgnn |
|- ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = -u 1 ) |
| 23 |
15 21 22
|
syl2an2r |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> ( sgn ` A ) = -u 1 ) |
| 24 |
11 14 23
|
3eqtr4rd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ A <_ 0 ) -> ( sgn ` A ) = ( A / ( abs ` A ) ) ) |
| 25 |
8
|
adantr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ 0 <_ A ) -> ( A / A ) = 1 ) |
| 26 |
1
|
adantr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ 0 <_ A ) -> A e. RR ) |
| 27 |
|
simpr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ 0 <_ A ) -> 0 <_ A ) |
| 28 |
26 27
|
absidd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ 0 <_ A ) -> ( abs ` A ) = A ) |
| 29 |
28
|
oveq2d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ 0 <_ A ) -> ( A / ( abs ` A ) ) = ( A / A ) ) |
| 30 |
|
simplr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ 0 <_ A ) -> A =/= 0 ) |
| 31 |
26 27 30
|
ne0gt0d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ 0 <_ A ) -> 0 < A ) |
| 32 |
|
sgnp |
|- ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) = 1 ) |
| 33 |
15 31 32
|
syl2an2r |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ 0 <_ A ) -> ( sgn ` A ) = 1 ) |
| 34 |
25 29 33
|
3eqtr4rd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ 0 <_ A ) -> ( sgn ` A ) = ( A / ( abs ` A ) ) ) |
| 35 |
1 2 24 34
|
lecasei |
|- ( ( A e. RR /\ A =/= 0 ) -> ( sgn ` A ) = ( A / ( abs ` A ) ) ) |