Metamath Proof Explorer


Theorem sgnval2

Description: Value of the signum of a real number, expresssed using absolute value. (Contributed by Thierry Arnoux, 9-Nov-2025)

Ref Expression
Assertion sgnval2 A A 0 sgn A = A A

Proof

Step Hyp Ref Expression
1 simpl A A 0 A
2 0red A A 0 0
3 1 recnd A A 0 A
4 3 adantr A A 0 A 0 A
5 simplr A A 0 A 0 A 0
6 4 4 5 divneg2d A A 0 A 0 A A = A A
7 simpr A A 0 A 0
8 3 7 dividd A A 0 A A = 1
9 8 adantr A A 0 A 0 A A = 1
10 9 negeqd A A 0 A 0 A A = 1
11 6 10 eqtr3d A A 0 A 0 A A = 1
12 absnid A A 0 A = A
13 12 adantlr A A 0 A 0 A = A
14 13 oveq2d A A 0 A 0 A A = A A
15 1 rexrd A A 0 A *
16 1 adantr A A 0 A 0 A
17 0red A A 0 A 0 0
18 simpr A A 0 A 0 A 0
19 7 necomd A A 0 0 A
20 19 adantr A A 0 A 0 0 A
21 16 17 18 20 leneltd A A 0 A 0 A < 0
22 sgnn A * A < 0 sgn A = 1
23 15 21 22 syl2an2r A A 0 A 0 sgn A = 1
24 11 14 23 3eqtr4rd A A 0 A 0 sgn A = A A
25 8 adantr A A 0 0 A A A = 1
26 1 adantr A A 0 0 A A
27 simpr A A 0 0 A 0 A
28 26 27 absidd A A 0 0 A A = A
29 28 oveq2d A A 0 0 A A A = A A
30 simplr A A 0 0 A A 0
31 26 27 30 ne0gt0d A A 0 0 A 0 < A
32 sgnp A * 0 < A sgn A = 1
33 15 31 32 syl2an2r A A 0 0 A sgn A = 1
34 25 29 33 3eqtr4rd A A 0 0 A sgn A = A A
35 1 2 24 34 lecasei A A 0 sgn A = A A