| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
| 2 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 ∈ ℝ ) |
| 3 |
1
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℂ ) |
| 5 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ≠ 0 ) |
| 6 |
4 4 5
|
divneg2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → - ( 𝐴 / 𝐴 ) = ( 𝐴 / - 𝐴 ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
| 8 |
3 7
|
dividd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = 1 ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 / 𝐴 ) = 1 ) |
| 10 |
9
|
negeqd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → - ( 𝐴 / 𝐴 ) = - 1 ) |
| 11 |
6 10
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 / - 𝐴 ) = - 1 ) |
| 12 |
|
absnid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
| 13 |
12
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
| 14 |
13
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) = ( 𝐴 / - 𝐴 ) ) |
| 15 |
1
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ* ) |
| 16 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℝ ) |
| 17 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → 0 ∈ ℝ ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ≤ 0 ) |
| 19 |
7
|
necomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 ≠ 𝐴 ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → 0 ≠ 𝐴 ) |
| 21 |
16 17 18 20
|
leneltd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 < 0 ) |
| 22 |
|
sgnn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐴 ) = - 1 ) |
| 23 |
15 21 22
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → ( sgn ‘ 𝐴 ) = - 1 ) |
| 24 |
11 14 23
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≤ 0 ) → ( sgn ‘ 𝐴 ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
| 25 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 0 ≤ 𝐴 ) → ( 𝐴 / 𝐴 ) = 1 ) |
| 26 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 0 ≤ 𝐴 ) → 0 ≤ 𝐴 ) |
| 28 |
26 27
|
absidd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 29 |
28
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 0 ≤ 𝐴 ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) = ( 𝐴 / 𝐴 ) ) |
| 30 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ≠ 0 ) |
| 31 |
26 27 30
|
ne0gt0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 0 ≤ 𝐴 ) → 0 < 𝐴 ) |
| 32 |
|
sgnp |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 ) |
| 33 |
15 31 32
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 0 ≤ 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 ) |
| 34 |
25 29 33
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 0 ≤ 𝐴 ) → ( sgn ‘ 𝐴 ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
| 35 |
1 2 24 34
|
lecasei |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( sgn ‘ 𝐴 ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |