| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snelmap.a |
|- ( ph -> A e. V ) |
| 2 |
|
snelmap.b |
|- ( ph -> B e. W ) |
| 3 |
|
snelmap.n |
|- ( ph -> A =/= (/) ) |
| 4 |
|
snelmap.e |
|- ( ph -> ( A X. { x } ) e. ( B ^m A ) ) |
| 5 |
|
n0 |
|- ( A =/= (/) <-> E. y y e. A ) |
| 6 |
3 5
|
sylib |
|- ( ph -> E. y y e. A ) |
| 7 |
|
vex |
|- x e. _V |
| 8 |
7
|
fvconst2 |
|- ( y e. A -> ( ( A X. { x } ) ` y ) = x ) |
| 9 |
8
|
eqcomd |
|- ( y e. A -> x = ( ( A X. { x } ) ` y ) ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ y e. A ) -> x = ( ( A X. { x } ) ` y ) ) |
| 11 |
|
elmapg |
|- ( ( B e. W /\ A e. V ) -> ( ( A X. { x } ) e. ( B ^m A ) <-> ( A X. { x } ) : A --> B ) ) |
| 12 |
2 1 11
|
syl2anc |
|- ( ph -> ( ( A X. { x } ) e. ( B ^m A ) <-> ( A X. { x } ) : A --> B ) ) |
| 13 |
4 12
|
mpbid |
|- ( ph -> ( A X. { x } ) : A --> B ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ y e. A ) -> ( A X. { x } ) : A --> B ) |
| 15 |
|
simpr |
|- ( ( ph /\ y e. A ) -> y e. A ) |
| 16 |
14 15
|
ffvelcdmd |
|- ( ( ph /\ y e. A ) -> ( ( A X. { x } ) ` y ) e. B ) |
| 17 |
10 16
|
eqeltrd |
|- ( ( ph /\ y e. A ) -> x e. B ) |
| 18 |
17
|
ex |
|- ( ph -> ( y e. A -> x e. B ) ) |
| 19 |
18
|
exlimdv |
|- ( ph -> ( E. y y e. A -> x e. B ) ) |
| 20 |
6 19
|
mpd |
|- ( ph -> x e. B ) |