Metamath Proof Explorer


Theorem snelmap

Description: Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses snelmap.a ( 𝜑𝐴𝑉 )
snelmap.b ( 𝜑𝐵𝑊 )
snelmap.n ( 𝜑𝐴 ≠ ∅ )
snelmap.e ( 𝜑 → ( 𝐴 × { 𝑥 } ) ∈ ( 𝐵m 𝐴 ) )
Assertion snelmap ( 𝜑𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 snelmap.a ( 𝜑𝐴𝑉 )
2 snelmap.b ( 𝜑𝐵𝑊 )
3 snelmap.n ( 𝜑𝐴 ≠ ∅ )
4 snelmap.e ( 𝜑 → ( 𝐴 × { 𝑥 } ) ∈ ( 𝐵m 𝐴 ) )
5 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐴 )
6 3 5 sylib ( 𝜑 → ∃ 𝑦 𝑦𝐴 )
7 vex 𝑥 ∈ V
8 7 fvconst2 ( 𝑦𝐴 → ( ( 𝐴 × { 𝑥 } ) ‘ 𝑦 ) = 𝑥 )
9 8 eqcomd ( 𝑦𝐴𝑥 = ( ( 𝐴 × { 𝑥 } ) ‘ 𝑦 ) )
10 9 adantl ( ( 𝜑𝑦𝐴 ) → 𝑥 = ( ( 𝐴 × { 𝑥 } ) ‘ 𝑦 ) )
11 elmapg ( ( 𝐵𝑊𝐴𝑉 ) → ( ( 𝐴 × { 𝑥 } ) ∈ ( 𝐵m 𝐴 ) ↔ ( 𝐴 × { 𝑥 } ) : 𝐴𝐵 ) )
12 2 1 11 syl2anc ( 𝜑 → ( ( 𝐴 × { 𝑥 } ) ∈ ( 𝐵m 𝐴 ) ↔ ( 𝐴 × { 𝑥 } ) : 𝐴𝐵 ) )
13 4 12 mpbid ( 𝜑 → ( 𝐴 × { 𝑥 } ) : 𝐴𝐵 )
14 13 adantr ( ( 𝜑𝑦𝐴 ) → ( 𝐴 × { 𝑥 } ) : 𝐴𝐵 )
15 simpr ( ( 𝜑𝑦𝐴 ) → 𝑦𝐴 )
16 14 15 ffvelrnd ( ( 𝜑𝑦𝐴 ) → ( ( 𝐴 × { 𝑥 } ) ‘ 𝑦 ) ∈ 𝐵 )
17 10 16 eqeltrd ( ( 𝜑𝑦𝐴 ) → 𝑥𝐵 )
18 17 ex ( 𝜑 → ( 𝑦𝐴𝑥𝐵 ) )
19 18 exlimdv ( 𝜑 → ( ∃ 𝑦 𝑦𝐴𝑥𝐵 ) )
20 6 19 mpd ( 𝜑𝑥𝐵 )