Step |
Hyp |
Ref |
Expression |
1 |
|
snmlff.f |
|- F = ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) / n ) ) |
2 |
|
oveq2 |
|- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
3 |
2
|
rabeqdv |
|- ( n = N -> { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } = { k e. ( 1 ... N ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) |
4 |
3
|
fveq2d |
|- ( n = N -> ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) = ( # ` { k e. ( 1 ... N ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) ) |
5 |
|
id |
|- ( n = N -> n = N ) |
6 |
4 5
|
oveq12d |
|- ( n = N -> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) / n ) = ( ( # ` { k e. ( 1 ... N ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) / N ) ) |
7 |
|
ovex |
|- ( ( # ` { k e. ( 1 ... N ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) / N ) e. _V |
8 |
6 1 7
|
fvmpt |
|- ( N e. NN -> ( F ` N ) = ( ( # ` { k e. ( 1 ... N ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) / N ) ) |