Step |
Hyp |
Ref |
Expression |
1 |
|
snmlff.f |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
3 |
2
|
rabeqdv |
⊢ ( 𝑛 = 𝑁 → { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } = { 𝑘 ∈ ( 1 ... 𝑁 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) |
4 |
3
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) = ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑁 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ) |
5 |
|
id |
⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) |
6 |
4 5
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) = ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑁 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑁 ) ) |
7 |
|
ovex |
⊢ ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑁 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑁 ) ∈ V |
8 |
6 1 7
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑁 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑁 ) ) |