Metamath Proof Explorer


Theorem snssiALT

Description: If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi . This theorem was automatically generated from snssiALTVD using a translation program. (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snssiALT
|- ( A e. B -> { A } C_ B )

Proof

Step Hyp Ref Expression
1 velsn
 |-  ( x e. { A } <-> x = A )
2 eleq1a
 |-  ( A e. B -> ( x = A -> x e. B ) )
3 1 2 syl5bi
 |-  ( A e. B -> ( x e. { A } -> x e. B ) )
4 3 alrimiv
 |-  ( A e. B -> A. x ( x e. { A } -> x e. B ) )
5 dfss2
 |-  ( { A } C_ B <-> A. x ( x e. { A } -> x e. B ) )
6 4 5 sylibr
 |-  ( A e. B -> { A } C_ B )