Description: If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi . This theorem was automatically generated from snssiALTVD using a translation program. (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | snssiALT | |- ( A e. B -> { A } C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn | |- ( x e. { A } <-> x = A ) |
|
2 | eleq1a | |- ( A e. B -> ( x = A -> x e. B ) ) |
|
3 | 1 2 | syl5bi | |- ( A e. B -> ( x e. { A } -> x e. B ) ) |
4 | 3 | alrimiv | |- ( A e. B -> A. x ( x e. { A } -> x e. B ) ) |
5 | dfss2 | |- ( { A } C_ B <-> A. x ( x e. { A } -> x e. B ) ) |
|
6 | 4 5 | sylibr | |- ( A e. B -> { A } C_ B ) |