| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sraassa.a |
|- A = ( ( subringAlg ` W ) ` S ) |
| 2 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 3 |
2
|
subrgss |
|- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
| 4 |
3
|
adantl |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S C_ ( Base ` W ) ) |
| 5 |
|
eqid |
|- ( Cntr ` ( mulGrp ` W ) ) = ( Cntr ` ( mulGrp ` W ) ) |
| 6 |
2 5
|
crngbascntr |
|- ( W e. CRing -> ( Base ` W ) = ( Cntr ` ( mulGrp ` W ) ) ) |
| 7 |
6
|
adantr |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Cntr ` ( mulGrp ` W ) ) ) |
| 8 |
4 7
|
sseqtrd |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S C_ ( Cntr ` ( mulGrp ` W ) ) ) |
| 9 |
|
crngring |
|- ( W e. CRing -> W e. Ring ) |
| 10 |
9
|
adantr |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> W e. Ring ) |
| 11 |
|
simpr |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S e. ( SubRing ` W ) ) |
| 12 |
1 5 10 11
|
sraassab |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( A e. AssAlg <-> S C_ ( Cntr ` ( mulGrp ` W ) ) ) ) |
| 13 |
8 12
|
mpbird |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. AssAlg ) |