| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sraassab.a |
|- A = ( ( subringAlg ` W ) ` S ) |
| 2 |
|
sraassab.z |
|- Z = ( Cntr ` ( mulGrp ` W ) ) |
| 3 |
|
sraassab.w |
|- ( ph -> W e. Ring ) |
| 4 |
|
sraassab.s |
|- ( ph -> S e. ( SubRing ` W ) ) |
| 5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 6 |
5
|
subrgss |
|- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
| 7 |
4 6
|
syl |
|- ( ph -> S C_ ( Base ` W ) ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ A e. AssAlg ) -> S C_ ( Base ` W ) ) |
| 9 |
8
|
sselda |
|- ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) -> y e. ( Base ` W ) ) |
| 10 |
|
simpllr |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> A e. AssAlg ) |
| 11 |
|
eqid |
|- ( W |`s S ) = ( W |`s S ) |
| 12 |
11
|
subrgbas |
|- ( S e. ( SubRing ` W ) -> S = ( Base ` ( W |`s S ) ) ) |
| 13 |
4 12
|
syl |
|- ( ph -> S = ( Base ` ( W |`s S ) ) ) |
| 14 |
1
|
a1i |
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
| 15 |
14 7
|
srasca |
|- ( ph -> ( W |`s S ) = ( Scalar ` A ) ) |
| 16 |
15
|
fveq2d |
|- ( ph -> ( Base ` ( W |`s S ) ) = ( Base ` ( Scalar ` A ) ) ) |
| 17 |
13 16
|
eqtrd |
|- ( ph -> S = ( Base ` ( Scalar ` A ) ) ) |
| 18 |
17
|
eqimssd |
|- ( ph -> S C_ ( Base ` ( Scalar ` A ) ) ) |
| 19 |
18
|
sselda |
|- ( ( ph /\ y e. S ) -> y e. ( Base ` ( Scalar ` A ) ) ) |
| 20 |
19
|
ad4ant13 |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> y e. ( Base ` ( Scalar ` A ) ) ) |
| 21 |
14 7
|
srabase |
|- ( ph -> ( Base ` W ) = ( Base ` A ) ) |
| 22 |
21
|
eqimssd |
|- ( ph -> ( Base ` W ) C_ ( Base ` A ) ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) -> ( Base ` W ) C_ ( Base ` A ) ) |
| 24 |
23
|
sselda |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> x e. ( Base ` A ) ) |
| 25 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
| 26 |
5 25
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
| 27 |
3 26
|
syl |
|- ( ph -> ( 1r ` W ) e. ( Base ` W ) ) |
| 28 |
27 21
|
eleqtrd |
|- ( ph -> ( 1r ` W ) e. ( Base ` A ) ) |
| 29 |
28
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( 1r ` W ) e. ( Base ` A ) ) |
| 30 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 31 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
| 32 |
|
eqid |
|- ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) |
| 33 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
| 34 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
| 35 |
30 31 32 33 34
|
assaassr |
|- ( ( A e. AssAlg /\ ( y e. ( Base ` ( Scalar ` A ) ) /\ x e. ( Base ` A ) /\ ( 1r ` W ) e. ( Base ` A ) ) ) -> ( x ( .r ` A ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( y ( .s ` A ) ( x ( .r ` A ) ( 1r ` W ) ) ) ) |
| 36 |
10 20 24 29 35
|
syl13anc |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` A ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( y ( .s ` A ) ( x ( .r ` A ) ( 1r ` W ) ) ) ) |
| 37 |
14 7
|
sramulr |
|- ( ph -> ( .r ` W ) = ( .r ` A ) ) |
| 38 |
37
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( .r ` W ) = ( .r ` A ) ) |
| 39 |
38
|
oveqd |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( x ( .r ` A ) ( y ( .s ` A ) ( 1r ` W ) ) ) ) |
| 40 |
14 7
|
sravsca |
|- ( ph -> ( .r ` W ) = ( .s ` A ) ) |
| 41 |
40
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( .r ` W ) = ( .s ` A ) ) |
| 42 |
41
|
oveqd |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) ( 1r ` W ) ) = ( y ( .s ` A ) ( 1r ` W ) ) ) |
| 43 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
| 44 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> W e. Ring ) |
| 45 |
9
|
adantr |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> y e. ( Base ` W ) ) |
| 46 |
5 43 25 44 45
|
ringridmd |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) ( 1r ` W ) ) = y ) |
| 47 |
42 46
|
eqtr3d |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .s ` A ) ( 1r ` W ) ) = y ) |
| 48 |
47
|
oveq2d |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( x ( .r ` W ) y ) ) |
| 49 |
39 48
|
eqtr3d |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` A ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( x ( .r ` W ) y ) ) |
| 50 |
41
|
oveqd |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) ( x ( .r ` A ) ( 1r ` W ) ) ) = ( y ( .s ` A ) ( x ( .r ` A ) ( 1r ` W ) ) ) ) |
| 51 |
38
|
oveqd |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( 1r ` W ) ) = ( x ( .r ` A ) ( 1r ` W ) ) ) |
| 52 |
|
simpr |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> x e. ( Base ` W ) ) |
| 53 |
5 43 25 44 52
|
ringridmd |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( 1r ` W ) ) = x ) |
| 54 |
51 53
|
eqtr3d |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` A ) ( 1r ` W ) ) = x ) |
| 55 |
54
|
oveq2d |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) ( x ( .r ` A ) ( 1r ` W ) ) ) = ( y ( .r ` W ) x ) ) |
| 56 |
50 55
|
eqtr3d |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .s ` A ) ( x ( .r ` A ) ( 1r ` W ) ) ) = ( y ( .r ` W ) x ) ) |
| 57 |
36 49 56
|
3eqtr3rd |
|- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) x ) = ( x ( .r ` W ) y ) ) |
| 58 |
57
|
ralrimiva |
|- ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) -> A. x e. ( Base ` W ) ( y ( .r ` W ) x ) = ( x ( .r ` W ) y ) ) |
| 59 |
|
eqid |
|- ( mulGrp ` W ) = ( mulGrp ` W ) |
| 60 |
59 5
|
mgpbas |
|- ( Base ` W ) = ( Base ` ( mulGrp ` W ) ) |
| 61 |
59 43
|
mgpplusg |
|- ( .r ` W ) = ( +g ` ( mulGrp ` W ) ) |
| 62 |
60 61 2
|
elcntr |
|- ( y e. Z <-> ( y e. ( Base ` W ) /\ A. x e. ( Base ` W ) ( y ( .r ` W ) x ) = ( x ( .r ` W ) y ) ) ) |
| 63 |
9 58 62
|
sylanbrc |
|- ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) -> y e. Z ) |
| 64 |
63
|
ex |
|- ( ( ph /\ A e. AssAlg ) -> ( y e. S -> y e. Z ) ) |
| 65 |
64
|
ssrdv |
|- ( ( ph /\ A e. AssAlg ) -> S C_ Z ) |
| 66 |
21
|
adantr |
|- ( ( ph /\ S C_ Z ) -> ( Base ` W ) = ( Base ` A ) ) |
| 67 |
15
|
adantr |
|- ( ( ph /\ S C_ Z ) -> ( W |`s S ) = ( Scalar ` A ) ) |
| 68 |
13
|
adantr |
|- ( ( ph /\ S C_ Z ) -> S = ( Base ` ( W |`s S ) ) ) |
| 69 |
40
|
adantr |
|- ( ( ph /\ S C_ Z ) -> ( .r ` W ) = ( .s ` A ) ) |
| 70 |
37
|
adantr |
|- ( ( ph /\ S C_ Z ) -> ( .r ` W ) = ( .r ` A ) ) |
| 71 |
1
|
sralmod |
|- ( S e. ( SubRing ` W ) -> A e. LMod ) |
| 72 |
4 71
|
syl |
|- ( ph -> A e. LMod ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ S C_ Z ) -> A e. LMod ) |
| 74 |
1 5
|
sraring |
|- ( ( W e. Ring /\ S C_ ( Base ` W ) ) -> A e. Ring ) |
| 75 |
3 7 74
|
syl2anc |
|- ( ph -> A e. Ring ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ S C_ Z ) -> A e. Ring ) |
| 77 |
3
|
ad2antrr |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> W e. Ring ) |
| 78 |
7
|
adantr |
|- ( ( ph /\ S C_ Z ) -> S C_ ( Base ` W ) ) |
| 79 |
78
|
sselda |
|- ( ( ( ph /\ S C_ Z ) /\ x e. S ) -> x e. ( Base ` W ) ) |
| 80 |
79
|
3ad2antr1 |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
| 81 |
|
simpr2 |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
| 82 |
|
simpr3 |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
| 83 |
5 43 77 80 81 82
|
ringassd |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 84 |
|
ssel2 |
|- ( ( S C_ Z /\ x e. S ) -> x e. Z ) |
| 85 |
84
|
ad2ant2lr |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) ) ) -> x e. Z ) |
| 86 |
|
simprr |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
| 87 |
60 61 2
|
cntri |
|- ( ( x e. Z /\ y e. ( Base ` W ) ) -> ( x ( .r ` W ) y ) = ( y ( .r ` W ) x ) ) |
| 88 |
85 86 87
|
syl2anc |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( y ( .r ` W ) x ) ) |
| 89 |
88
|
3adantr3 |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( y ( .r ` W ) x ) ) |
| 90 |
89
|
oveq1d |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( ( y ( .r ` W ) x ) ( .r ` W ) z ) ) |
| 91 |
5 43 77 81 80 82
|
ringassd |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( y ( .r ` W ) x ) ( .r ` W ) z ) = ( y ( .r ` W ) ( x ( .r ` W ) z ) ) ) |
| 92 |
90 83 91
|
3eqtr3rd |
|- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .r ` W ) z ) ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 93 |
66 67 68 69 70 73 76 83 92
|
isassad |
|- ( ( ph /\ S C_ Z ) -> A e. AssAlg ) |
| 94 |
65 93
|
impbida |
|- ( ph -> ( A e. AssAlg <-> S C_ Z ) ) |