| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sraassab.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) |
| 2 |
|
sraassab.z |
⊢ 𝑍 = ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) |
| 3 |
|
sraassab.w |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 4 |
|
sraassab.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 6 |
5
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 9 |
8
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 10 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝐴 ∈ AssAlg ) |
| 11 |
|
eqid |
⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) |
| 12 |
11
|
subrgbas |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 14 |
1
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 15 |
14 7
|
srasca |
⊢ ( 𝜑 → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 17 |
13 16
|
eqtrd |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 18 |
17
|
eqimssd |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 19 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 20 |
19
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 21 |
14 7
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 22 |
21
|
eqimssd |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝐴 ) ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) → ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝐴 ) ) |
| 24 |
23
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 25 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
| 26 |
5 25
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 27 |
3 26
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 28 |
27 21
|
eleqtrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝐴 ) ) |
| 29 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝐴 ) ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 31 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 32 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
| 33 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
| 34 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 35 |
30 31 32 33 34
|
assaassr |
⊢ ( ( 𝐴 ∈ AssAlg ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 36 |
10 20 24 29 35
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 37 |
14 7
|
sramulr |
⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
| 38 |
37
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
| 39 |
38
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 40 |
14 7
|
sravsca |
⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 41 |
40
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 42 |
41
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) |
| 43 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
| 44 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ Ring ) |
| 45 |
9
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 46 |
5 43 25 44 45
|
ringridmd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = 𝑦 ) |
| 47 |
42 46
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) = 𝑦 ) |
| 48 |
47
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 49 |
39 48
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 50 |
41
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 51 |
38
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) |
| 52 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 53 |
5 43 25 44 52
|
ringridmd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = 𝑥 ) |
| 54 |
51 53
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) = 𝑥 ) |
| 55 |
54
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 56 |
50 55
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 57 |
36 49 56
|
3eqtr3rd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 58 |
57
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 59 |
|
eqid |
⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) |
| 60 |
59 5
|
mgpbas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( mulGrp ‘ 𝑊 ) ) |
| 61 |
59 43
|
mgpplusg |
⊢ ( .r ‘ 𝑊 ) = ( +g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 62 |
60 61 2
|
elcntr |
⊢ ( 𝑦 ∈ 𝑍 ↔ ( 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) |
| 63 |
9 58 62
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑍 ) |
| 64 |
63
|
ex |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝑍 ) ) |
| 65 |
64
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) → 𝑆 ⊆ 𝑍 ) |
| 66 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 67 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 68 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 69 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 70 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
| 71 |
1
|
sralmod |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ LMod ) |
| 72 |
4 71
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ LMod ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝐴 ∈ LMod ) |
| 74 |
1 5
|
sraring |
⊢ ( ( 𝑊 ∈ Ring ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → 𝐴 ∈ Ring ) |
| 75 |
3 7 74
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝐴 ∈ Ring ) |
| 77 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ Ring ) |
| 78 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 79 |
78
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 80 |
79
|
3ad2antr1 |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 81 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 82 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 83 |
5 43 77 80 81 82
|
ringassd |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 84 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝑍 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑍 ) |
| 85 |
84
|
ad2ant2lr |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ 𝑍 ) |
| 86 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 87 |
60 61 2
|
cntri |
⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 88 |
85 86 87
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 89 |
88
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 90 |
89
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑧 ) ) |
| 91 |
5 43 77 81 80 82
|
ringassd |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 92 |
90 83 91
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 93 |
66 67 68 69 70 73 76 83 92
|
isassad |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝐴 ∈ AssAlg ) |
| 94 |
65 93
|
impbida |
⊢ ( 𝜑 → ( 𝐴 ∈ AssAlg ↔ 𝑆 ⊆ 𝑍 ) ) |