Metamath Proof Explorer


Theorem sraassa

Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof shortened by SN, 21-Mar-2025)

Ref Expression
Hypothesis sraassa.a A=subringAlgWS
Assertion sraassa WCRingSSubRingWAAssAlg

Proof

Step Hyp Ref Expression
1 sraassa.a A=subringAlgWS
2 eqid BaseW=BaseW
3 2 subrgss SSubRingWSBaseW
4 3 adantl WCRingSSubRingWSBaseW
5 eqid CntrmulGrpW=CntrmulGrpW
6 2 5 crngbascntr WCRingBaseW=CntrmulGrpW
7 6 adantr WCRingSSubRingWBaseW=CntrmulGrpW
8 4 7 sseqtrd WCRingSSubRingWSCntrmulGrpW
9 crngring WCRingWRing
10 9 adantr WCRingSSubRingWWRing
11 simpr WCRingSSubRingWSSubRingW
12 1 5 10 11 sraassab WCRingSSubRingWAAssAlgSCntrmulGrpW
13 8 12 mpbird WCRingSSubRingWAAssAlg