Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof shortened by SN, 21-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sraassa.a | |
|
Assertion | sraassa | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sraassa.a | |
|
2 | eqid | |
|
3 | 2 | subrgss | |
4 | 3 | adantl | |
5 | eqid | |
|
6 | 2 5 | crngbascntr | |
7 | 6 | adantr | |
8 | 4 7 | sseqtrd | |
9 | crngring | |
|
10 | 9 | adantr | |
11 | simpr | |
|
12 | 1 5 10 11 | sraassab | |
13 | 8 12 | mpbird | |