Metamath Proof Explorer


Theorem sraidom

Description: Condition for a subring algebra to be an integral domain. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses sraidom.1
|- A = ( ( subringAlg ` R ) ` V )
sraidom.2
|- B = ( Base ` R )
sraidom.3
|- ( ph -> R e. IDomn )
sraidom.4
|- ( ph -> V C_ B )
Assertion sraidom
|- ( ph -> A e. IDomn )

Proof

Step Hyp Ref Expression
1 sraidom.1
 |-  A = ( ( subringAlg ` R ) ` V )
2 sraidom.2
 |-  B = ( Base ` R )
3 sraidom.3
 |-  ( ph -> R e. IDomn )
4 sraidom.4
 |-  ( ph -> V C_ B )
5 eqidd
 |-  ( ph -> ( Base ` R ) = ( Base ` R ) )
6 1 a1i
 |-  ( ph -> A = ( ( subringAlg ` R ) ` V ) )
7 4 2 sseqtrdi
 |-  ( ph -> V C_ ( Base ` R ) )
8 6 7 srabase
 |-  ( ph -> ( Base ` R ) = ( Base ` A ) )
9 6 7 sraaddg
 |-  ( ph -> ( +g ` R ) = ( +g ` A ) )
10 9 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` A ) y ) )
11 6 7 sramulr
 |-  ( ph -> ( .r ` R ) = ( .r ` A ) )
12 11 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` A ) y ) )
13 5 8 10 12 idompropd
 |-  ( ph -> ( R e. IDomn <-> A e. IDomn ) )
14 3 13 mpbid
 |-  ( ph -> A e. IDomn )