| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sraidom.1 |
|- A = ( ( subringAlg ` R ) ` V ) |
| 2 |
|
sraidom.2 |
|- B = ( Base ` R ) |
| 3 |
|
sraidom.3 |
|- ( ph -> R e. IDomn ) |
| 4 |
|
sraidom.4 |
|- ( ph -> V C_ B ) |
| 5 |
|
eqidd |
|- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
| 6 |
1
|
a1i |
|- ( ph -> A = ( ( subringAlg ` R ) ` V ) ) |
| 7 |
4 2
|
sseqtrdi |
|- ( ph -> V C_ ( Base ` R ) ) |
| 8 |
6 7
|
srabase |
|- ( ph -> ( Base ` R ) = ( Base ` A ) ) |
| 9 |
6 7
|
sraaddg |
|- ( ph -> ( +g ` R ) = ( +g ` A ) ) |
| 10 |
9
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` A ) y ) ) |
| 11 |
6 7
|
sramulr |
|- ( ph -> ( .r ` R ) = ( .r ` A ) ) |
| 12 |
11
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` A ) y ) ) |
| 13 |
5 8 10 12
|
idompropd |
|- ( ph -> ( R e. IDomn <-> A e. IDomn ) ) |
| 14 |
3 13
|
mpbid |
|- ( ph -> A e. IDomn ) |