Metamath Proof Explorer


Theorem sraidom

Description: Condition for a subring algebra to be an integral domain. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses sraidom.1 A = subringAlg R V
sraidom.2 B = Base R
sraidom.3 φ R IDomn
sraidom.4 φ V B
Assertion sraidom φ A IDomn

Proof

Step Hyp Ref Expression
1 sraidom.1 A = subringAlg R V
2 sraidom.2 B = Base R
3 sraidom.3 φ R IDomn
4 sraidom.4 φ V B
5 eqidd φ Base R = Base R
6 1 a1i φ A = subringAlg R V
7 4 2 sseqtrdi φ V Base R
8 6 7 srabase φ Base R = Base A
9 6 7 sraaddg φ + R = + A
10 9 oveqdr φ x Base R y Base R x + R y = x + A y
11 6 7 sramulr φ R = A
12 11 oveqdr φ x Base R y Base R x R y = x A y
13 5 8 10 12 idompropd φ R IDomn A IDomn
14 3 13 mpbid φ A IDomn