| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sraidom.1 |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑉 ) |
| 2 |
|
sraidom.2 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
sraidom.3 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 4 |
|
sraidom.4 |
⊢ ( 𝜑 → 𝑉 ⊆ 𝐵 ) |
| 5 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 6 |
1
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑉 ) ) |
| 7 |
4 2
|
sseqtrdi |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝑅 ) ) |
| 8 |
6 7
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) ) |
| 9 |
6 7
|
sraaddg |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐴 ) ) |
| 10 |
9
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
| 11 |
6 7
|
sramulr |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐴 ) ) |
| 12 |
11
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
| 13 |
5 8 10 12
|
idompropd |
⊢ ( 𝜑 → ( 𝑅 ∈ IDomn ↔ 𝐴 ∈ IDomn ) ) |
| 14 |
3 13
|
mpbid |
⊢ ( 𝜑 → 𝐴 ∈ IDomn ) |