Metamath Proof Explorer


Theorem srgpcomppsc

Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgpcomp.s
|- S = ( Base ` R )
srgpcomp.m
|- .X. = ( .r ` R )
srgpcomp.g
|- G = ( mulGrp ` R )
srgpcomp.e
|- .^ = ( .g ` G )
srgpcomp.r
|- ( ph -> R e. SRing )
srgpcomp.a
|- ( ph -> A e. S )
srgpcomp.b
|- ( ph -> B e. S )
srgpcomp.k
|- ( ph -> K e. NN0 )
srgpcomp.c
|- ( ph -> ( A .X. B ) = ( B .X. A ) )
srgpcompp.n
|- ( ph -> N e. NN0 )
srgpcomppsc.t
|- .x. = ( .g ` R )
srgpcomppsc.c
|- ( ph -> C e. NN0 )
Assertion srgpcomppsc
|- ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( C .x. ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) )

Proof

Step Hyp Ref Expression
1 srgpcomp.s
 |-  S = ( Base ` R )
2 srgpcomp.m
 |-  .X. = ( .r ` R )
3 srgpcomp.g
 |-  G = ( mulGrp ` R )
4 srgpcomp.e
 |-  .^ = ( .g ` G )
5 srgpcomp.r
 |-  ( ph -> R e. SRing )
6 srgpcomp.a
 |-  ( ph -> A e. S )
7 srgpcomp.b
 |-  ( ph -> B e. S )
8 srgpcomp.k
 |-  ( ph -> K e. NN0 )
9 srgpcomp.c
 |-  ( ph -> ( A .X. B ) = ( B .X. A ) )
10 srgpcompp.n
 |-  ( ph -> N e. NN0 )
11 srgpcomppsc.t
 |-  .x. = ( .g ` R )
12 srgpcomppsc.c
 |-  ( ph -> C e. NN0 )
13 3 1 mgpbas
 |-  S = ( Base ` G )
14 3 srgmgp
 |-  ( R e. SRing -> G e. Mnd )
15 5 14 syl
 |-  ( ph -> G e. Mnd )
16 13 4 15 10 6 mulgnn0cld
 |-  ( ph -> ( N .^ A ) e. S )
17 13 4 15 8 7 mulgnn0cld
 |-  ( ph -> ( K .^ B ) e. S )
18 1 11 2 srgmulgass
 |-  ( ( R e. SRing /\ ( C e. NN0 /\ ( N .^ A ) e. S /\ ( K .^ B ) e. S ) ) -> ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) = ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) )
19 18 eqcomd
 |-  ( ( R e. SRing /\ ( C e. NN0 /\ ( N .^ A ) e. S /\ ( K .^ B ) e. S ) ) -> ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) = ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) )
20 5 12 16 17 19 syl13anc
 |-  ( ph -> ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) = ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) )
21 20 oveq1d
 |-  ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) .X. A ) )
22 srgmnd
 |-  ( R e. SRing -> R e. Mnd )
23 5 22 syl
 |-  ( ph -> R e. Mnd )
24 1 11 23 12 16 mulgnn0cld
 |-  ( ph -> ( C .x. ( N .^ A ) ) e. S )
25 1 2 srgass
 |-  ( ( R e. SRing /\ ( ( C .x. ( N .^ A ) ) e. S /\ ( K .^ B ) e. S /\ A e. S ) ) -> ( ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) .X. A ) = ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) )
26 5 24 17 6 25 syl13anc
 |-  ( ph -> ( ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) .X. A ) = ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) )
27 21 26 eqtrd
 |-  ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) )
28 1 2 srgcl
 |-  ( ( R e. SRing /\ ( K .^ B ) e. S /\ A e. S ) -> ( ( K .^ B ) .X. A ) e. S )
29 5 17 6 28 syl3anc
 |-  ( ph -> ( ( K .^ B ) .X. A ) e. S )
30 1 11 2 srgmulgass
 |-  ( ( R e. SRing /\ ( C e. NN0 /\ ( N .^ A ) e. S /\ ( ( K .^ B ) .X. A ) e. S ) ) -> ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) = ( C .x. ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) )
31 5 12 16 29 30 syl13anc
 |-  ( ph -> ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) = ( C .x. ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) )
32 1 2 srgass
 |-  ( ( R e. SRing /\ ( ( N .^ A ) e. S /\ ( K .^ B ) e. S /\ A e. S ) ) -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) = ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) )
33 5 16 17 6 32 syl13anc
 |-  ( ph -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) = ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) )
34 33 eqcomd
 |-  ( ph -> ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) = ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) )
35 34 oveq2d
 |-  ( ph -> ( C .x. ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) = ( C .x. ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) )
36 31 35 eqtrd
 |-  ( ph -> ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) = ( C .x. ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) )
37 1 2 3 4 5 6 7 8 9 10 srgpcompp
 |-  ( ph -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) = ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) )
38 37 oveq2d
 |-  ( ph -> ( C .x. ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) = ( C .x. ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) )
39 27 36 38 3eqtrd
 |-  ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( C .x. ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) )