| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sublevolico.a |
|- ( ph -> A e. RR ) |
| 2 |
|
sublevolico.b |
|- ( ph -> B e. RR ) |
| 3 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 4 |
|
eqidd |
|- ( ph -> ( B - A ) = ( B - A ) ) |
| 5 |
3 4
|
eqled |
|- ( ph -> ( B - A ) <_ ( B - A ) ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ A < B ) -> ( B - A ) <_ ( B - A ) ) |
| 7 |
|
volico |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 8 |
1 2 7
|
syl2anc |
|- ( ph -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ A < B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 10 |
|
iftrue |
|- ( A < B -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ A < B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
| 12 |
9 11
|
eqtr2d |
|- ( ( ph /\ A < B ) -> ( B - A ) = ( vol ` ( A [,) B ) ) ) |
| 13 |
6 12
|
breqtrd |
|- ( ( ph /\ A < B ) -> ( B - A ) <_ ( vol ` ( A [,) B ) ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ -. A < B ) -> -. A < B ) |
| 15 |
2 1
|
lenltd |
|- ( ph -> ( B <_ A <-> -. A < B ) ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ -. A < B ) -> ( B <_ A <-> -. A < B ) ) |
| 17 |
14 16
|
mpbird |
|- ( ( ph /\ -. A < B ) -> B <_ A ) |
| 18 |
2
|
adantr |
|- ( ( ph /\ -. A < B ) -> B e. RR ) |
| 19 |
1
|
adantr |
|- ( ( ph /\ -. A < B ) -> A e. RR ) |
| 20 |
18 19
|
suble0d |
|- ( ( ph /\ -. A < B ) -> ( ( B - A ) <_ 0 <-> B <_ A ) ) |
| 21 |
17 20
|
mpbird |
|- ( ( ph /\ -. A < B ) -> ( B - A ) <_ 0 ) |
| 22 |
8
|
adantr |
|- ( ( ph /\ -. A < B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 23 |
|
iffalse |
|- ( -. A < B -> if ( A < B , ( B - A ) , 0 ) = 0 ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ -. A < B ) -> if ( A < B , ( B - A ) , 0 ) = 0 ) |
| 25 |
22 24
|
eqtr2d |
|- ( ( ph /\ -. A < B ) -> 0 = ( vol ` ( A [,) B ) ) ) |
| 26 |
21 25
|
breqtrd |
|- ( ( ph /\ -. A < B ) -> ( B - A ) <_ ( vol ` ( A [,) B ) ) ) |
| 27 |
13 26
|
pm2.61dan |
|- ( ph -> ( B - A ) <_ ( vol ` ( A [,) B ) ) ) |