Metamath Proof Explorer


Theorem sublevolico

Description: The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses sublevolico.a φA
sublevolico.b φB
Assertion sublevolico φBAvolAB

Proof

Step Hyp Ref Expression
1 sublevolico.a φA
2 sublevolico.b φB
3 2 1 resubcld φBA
4 eqidd φBA=BA
5 3 4 eqled φBABA
6 5 adantr φA<BBABA
7 volico ABvolAB=ifA<BBA0
8 1 2 7 syl2anc φvolAB=ifA<BBA0
9 8 adantr φA<BvolAB=ifA<BBA0
10 iftrue A<BifA<BBA0=BA
11 10 adantl φA<BifA<BBA0=BA
12 9 11 eqtr2d φA<BBA=volAB
13 6 12 breqtrd φA<BBAvolAB
14 simpr φ¬A<B¬A<B
15 2 1 lenltd φBA¬A<B
16 15 adantr φ¬A<BBA¬A<B
17 14 16 mpbird φ¬A<BBA
18 2 adantr φ¬A<BB
19 1 adantr φ¬A<BA
20 18 19 suble0d φ¬A<BBA0BA
21 17 20 mpbird φ¬A<BBA0
22 8 adantr φ¬A<BvolAB=ifA<BBA0
23 iffalse ¬A<BifA<BBA0=0
24 23 adantl φ¬A<BifA<BBA0=0
25 22 24 eqtr2d φ¬A<B0=volAB
26 21 25 breqtrd φ¬A<BBAvolAB
27 13 26 pm2.61dan φBAvolAB