Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
|- _om e. On |
2 |
|
sucidg |
|- ( _om e. On -> _om e. suc _om ) |
3 |
1 2
|
ax-mp |
|- _om e. suc _om |
4 |
|
omensuc |
|- _om ~~ suc _om |
5 |
|
breq1 |
|- ( x = _om -> ( x ~~ suc _om <-> _om ~~ suc _om ) ) |
6 |
5
|
rspcev |
|- ( ( _om e. suc _om /\ _om ~~ suc _om ) -> E. x e. suc _om x ~~ suc _om ) |
7 |
3 4 6
|
mp2an |
|- E. x e. suc _om x ~~ suc _om |
8 |
|
dfrex2 |
|- ( E. x e. suc _om x ~~ suc _om <-> -. A. x e. suc _om -. x ~~ suc _om ) |
9 |
7 8
|
mpbi |
|- -. A. x e. suc _om -. x ~~ suc _om |
10 |
9
|
intnan |
|- -. ( suc _om e. On /\ A. x e. suc _om -. x ~~ suc _om ) |
11 |
|
oa1suc |
|- ( _om e. On -> ( _om +o 1o ) = suc _om ) |
12 |
1 11
|
ax-mp |
|- ( _om +o 1o ) = suc _om |
13 |
12
|
eleq1i |
|- ( ( _om +o 1o ) e. ran card <-> suc _om e. ran card ) |
14 |
|
elrncard |
|- ( suc _om e. ran card <-> ( suc _om e. On /\ A. x e. suc _om -. x ~~ suc _om ) ) |
15 |
13 14
|
sylbb |
|- ( ( _om +o 1o ) e. ran card -> ( suc _om e. On /\ A. x e. suc _om -. x ~~ suc _om ) ) |
16 |
10 15
|
mto |
|- -. ( _om +o 1o ) e. ran card |