Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
⊢ ω ∈ On |
2 |
|
sucidg |
⊢ ( ω ∈ On → ω ∈ suc ω ) |
3 |
1 2
|
ax-mp |
⊢ ω ∈ suc ω |
4 |
|
omensuc |
⊢ ω ≈ suc ω |
5 |
|
breq1 |
⊢ ( 𝑥 = ω → ( 𝑥 ≈ suc ω ↔ ω ≈ suc ω ) ) |
6 |
5
|
rspcev |
⊢ ( ( ω ∈ suc ω ∧ ω ≈ suc ω ) → ∃ 𝑥 ∈ suc ω 𝑥 ≈ suc ω ) |
7 |
3 4 6
|
mp2an |
⊢ ∃ 𝑥 ∈ suc ω 𝑥 ≈ suc ω |
8 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ suc ω 𝑥 ≈ suc ω ↔ ¬ ∀ 𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω ) |
9 |
7 8
|
mpbi |
⊢ ¬ ∀ 𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω |
10 |
9
|
intnan |
⊢ ¬ ( suc ω ∈ On ∧ ∀ 𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω ) |
11 |
|
oa1suc |
⊢ ( ω ∈ On → ( ω +o 1o ) = suc ω ) |
12 |
1 11
|
ax-mp |
⊢ ( ω +o 1o ) = suc ω |
13 |
12
|
eleq1i |
⊢ ( ( ω +o 1o ) ∈ ran card ↔ suc ω ∈ ran card ) |
14 |
|
elrncard |
⊢ ( suc ω ∈ ran card ↔ ( suc ω ∈ On ∧ ∀ 𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω ) ) |
15 |
13 14
|
sylbb |
⊢ ( ( ω +o 1o ) ∈ ran card → ( suc ω ∈ On ∧ ∀ 𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω ) ) |
16 |
10 15
|
mto |
⊢ ¬ ( ω +o 1o ) ∈ ran card |