| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omelon | ⊢ ω  ∈  On | 
						
							| 2 |  | sucidg | ⊢ ( ω  ∈  On  →  ω  ∈  suc  ω ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ω  ∈  suc  ω | 
						
							| 4 |  | omensuc | ⊢ ω  ≈  suc  ω | 
						
							| 5 |  | breq1 | ⊢ ( 𝑥  =  ω  →  ( 𝑥  ≈  suc  ω  ↔  ω  ≈  suc  ω ) ) | 
						
							| 6 | 5 | rspcev | ⊢ ( ( ω  ∈  suc  ω  ∧  ω  ≈  suc  ω )  →  ∃ 𝑥  ∈  suc  ω 𝑥  ≈  suc  ω ) | 
						
							| 7 | 3 4 6 | mp2an | ⊢ ∃ 𝑥  ∈  suc  ω 𝑥  ≈  suc  ω | 
						
							| 8 |  | dfrex2 | ⊢ ( ∃ 𝑥  ∈  suc  ω 𝑥  ≈  suc  ω  ↔  ¬  ∀ 𝑥  ∈  suc  ω ¬  𝑥  ≈  suc  ω ) | 
						
							| 9 | 7 8 | mpbi | ⊢ ¬  ∀ 𝑥  ∈  suc  ω ¬  𝑥  ≈  suc  ω | 
						
							| 10 | 9 | intnan | ⊢ ¬  ( suc  ω  ∈  On  ∧  ∀ 𝑥  ∈  suc  ω ¬  𝑥  ≈  suc  ω ) | 
						
							| 11 |  | oa1suc | ⊢ ( ω  ∈  On  →  ( ω  +o  1o )  =  suc  ω ) | 
						
							| 12 | 1 11 | ax-mp | ⊢ ( ω  +o  1o )  =  suc  ω | 
						
							| 13 | 12 | eleq1i | ⊢ ( ( ω  +o  1o )  ∈  ran  card  ↔  suc  ω  ∈  ran  card ) | 
						
							| 14 |  | elrncard | ⊢ ( suc  ω  ∈  ran  card  ↔  ( suc  ω  ∈  On  ∧  ∀ 𝑥  ∈  suc  ω ¬  𝑥  ≈  suc  ω ) ) | 
						
							| 15 | 13 14 | sylbb | ⊢ ( ( ω  +o  1o )  ∈  ran  card  →  ( suc  ω  ∈  On  ∧  ∀ 𝑥  ∈  suc  ω ¬  𝑥  ≈  suc  ω ) ) | 
						
							| 16 | 10 15 | mto | ⊢ ¬  ( ω  +o  1o )  ∈  ran  card |