Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
General Observations
sucomisnotcard
Next ⟩
nna1iscard
Metamath Proof Explorer
Ascii
Unicode
Theorem
sucomisnotcard
Description:
_om +o 1o
is not a cardinal number.
(Contributed by
RP
, 1-Oct-2023)
Ref
Expression
Assertion
sucomisnotcard
⊢
¬
ω
+
𝑜
1
𝑜
∈
ran
⁡
card
Proof
Step
Hyp
Ref
Expression
1
omelon
⊢
ω
∈
On
2
sucidg
⊢
ω
∈
On
→
ω
∈
suc
⁡
ω
3
1
2
ax-mp
⊢
ω
∈
suc
⁡
ω
4
omensuc
⊢
ω
≈
suc
⁡
ω
5
breq1
⊢
x
=
ω
→
x
≈
suc
⁡
ω
↔
ω
≈
suc
⁡
ω
6
5
rspcev
⊢
ω
∈
suc
⁡
ω
∧
ω
≈
suc
⁡
ω
→
∃
x
∈
suc
⁡
ω
x
≈
suc
⁡
ω
7
3
4
6
mp2an
⊢
∃
x
∈
suc
⁡
ω
x
≈
suc
⁡
ω
8
dfrex2
⊢
∃
x
∈
suc
⁡
ω
x
≈
suc
⁡
ω
↔
¬
∀
x
∈
suc
⁡
ω
¬
x
≈
suc
⁡
ω
9
7
8
mpbi
⊢
¬
∀
x
∈
suc
⁡
ω
¬
x
≈
suc
⁡
ω
10
9
intnan
⊢
¬
suc
⁡
ω
∈
On
∧
∀
x
∈
suc
⁡
ω
¬
x
≈
suc
⁡
ω
11
oa1suc
⊢
ω
∈
On
→
ω
+
𝑜
1
𝑜
=
suc
⁡
ω
12
1
11
ax-mp
⊢
ω
+
𝑜
1
𝑜
=
suc
⁡
ω
13
12
eleq1i
⊢
ω
+
𝑜
1
𝑜
∈
ran
⁡
card
↔
suc
⁡
ω
∈
ran
⁡
card
14
elrncard
⊢
suc
⁡
ω
∈
ran
⁡
card
↔
suc
⁡
ω
∈
On
∧
∀
x
∈
suc
⁡
ω
¬
x
≈
suc
⁡
ω
15
13
14
sylbb
⊢
ω
+
𝑜
1
𝑜
∈
ran
⁡
card
→
suc
⁡
ω
∈
On
∧
∀
x
∈
suc
⁡
ω
¬
x
≈
suc
⁡
ω
16
10
15
mto
⊢
¬
ω
+
𝑜
1
𝑜
∈
ran
⁡
card