Metamath Proof Explorer


Theorem sucomisnotcard

Description: _om +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023)

Ref Expression
Assertion sucomisnotcard ¬ ω + 𝑜 1 𝑜 ran card

Proof

Step Hyp Ref Expression
1 omelon ω On
2 sucidg ω On ω suc ω
3 1 2 ax-mp ω suc ω
4 omensuc ω suc ω
5 breq1 x = ω x suc ω ω suc ω
6 5 rspcev ω suc ω ω suc ω x suc ω x suc ω
7 3 4 6 mp2an x suc ω x suc ω
8 dfrex2 x suc ω x suc ω ¬ x suc ω ¬ x suc ω
9 7 8 mpbi ¬ x suc ω ¬ x suc ω
10 9 intnan ¬ suc ω On x suc ω ¬ x suc ω
11 oa1suc ω On ω + 𝑜 1 𝑜 = suc ω
12 1 11 ax-mp ω + 𝑜 1 𝑜 = suc ω
13 12 eleq1i ω + 𝑜 1 𝑜 ran card suc ω ran card
14 elrncard suc ω ran card suc ω On x suc ω ¬ x suc ω
15 13 14 sylbb ω + 𝑜 1 𝑜 ran card suc ω On x suc ω ¬ x suc ω
16 10 15 mto ¬ ω + 𝑜 1 𝑜 ran card