| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supicc.1 |
|- ( ph -> B e. RR ) |
| 2 |
|
supicc.2 |
|- ( ph -> C e. RR ) |
| 3 |
|
supicc.3 |
|- ( ph -> A C_ ( B [,] C ) ) |
| 4 |
|
supicc.4 |
|- ( ph -> A =/= (/) ) |
| 5 |
|
supiccub.1 |
|- ( ph -> D e. A ) |
| 6 |
|
iccssre |
|- ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR ) |
| 7 |
1 2 6
|
syl2anc |
|- ( ph -> ( B [,] C ) C_ RR ) |
| 8 |
3 7
|
sstrd |
|- ( ph -> A C_ RR ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 10 |
9
|
rexrd |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
| 12 |
11
|
rexrd |
|- ( ( ph /\ x e. A ) -> C e. RR* ) |
| 13 |
3
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. ( B [,] C ) ) |
| 14 |
|
iccleub |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> x <_ C ) |
| 15 |
10 12 13 14
|
syl3anc |
|- ( ( ph /\ x e. A ) -> x <_ C ) |
| 16 |
15
|
ralrimiva |
|- ( ph -> A. x e. A x <_ C ) |
| 17 |
|
brralrspcev |
|- ( ( C e. RR /\ A. x e. A x <_ C ) -> E. y e. RR A. x e. A x <_ y ) |
| 18 |
2 16 17
|
syl2anc |
|- ( ph -> E. y e. RR A. x e. A x <_ y ) |
| 19 |
8 5
|
sseldd |
|- ( ph -> D e. RR ) |
| 20 |
|
suprlub |
|- ( ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) /\ D e. RR ) -> ( D < sup ( A , RR , < ) <-> E. z e. A D < z ) ) |
| 21 |
8 4 18 19 20
|
syl31anc |
|- ( ph -> ( D < sup ( A , RR , < ) <-> E. z e. A D < z ) ) |