Step |
Hyp |
Ref |
Expression |
1 |
|
tanhalfpim.a |
|- ( ph -> A e. CC ) |
2 |
|
tanhalfpim.1 |
|- ( ph -> ( sin ` A ) =/= 0 ) |
3 |
|
picn |
|- _pi e. CC |
4 |
|
2cn |
|- 2 e. CC |
5 |
|
2ne0 |
|- 2 =/= 0 |
6 |
3 4 5
|
divcli |
|- ( _pi / 2 ) e. CC |
7 |
6
|
a1i |
|- ( ph -> ( _pi / 2 ) e. CC ) |
8 |
7 1
|
subcld |
|- ( ph -> ( ( _pi / 2 ) - A ) e. CC ) |
9 |
|
coshalfpim |
|- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - A ) ) = ( sin ` A ) ) |
10 |
1 9
|
syl |
|- ( ph -> ( cos ` ( ( _pi / 2 ) - A ) ) = ( sin ` A ) ) |
11 |
10 2
|
eqnetrd |
|- ( ph -> ( cos ` ( ( _pi / 2 ) - A ) ) =/= 0 ) |
12 |
|
tanval |
|- ( ( ( ( _pi / 2 ) - A ) e. CC /\ ( cos ` ( ( _pi / 2 ) - A ) ) =/= 0 ) -> ( tan ` ( ( _pi / 2 ) - A ) ) = ( ( sin ` ( ( _pi / 2 ) - A ) ) / ( cos ` ( ( _pi / 2 ) - A ) ) ) ) |
13 |
8 11 12
|
syl2anc |
|- ( ph -> ( tan ` ( ( _pi / 2 ) - A ) ) = ( ( sin ` ( ( _pi / 2 ) - A ) ) / ( cos ` ( ( _pi / 2 ) - A ) ) ) ) |
14 |
|
sinhalfpim |
|- ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
15 |
14 9
|
oveq12d |
|- ( A e. CC -> ( ( sin ` ( ( _pi / 2 ) - A ) ) / ( cos ` ( ( _pi / 2 ) - A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
16 |
1 15
|
syl |
|- ( ph -> ( ( sin ` ( ( _pi / 2 ) - A ) ) / ( cos ` ( ( _pi / 2 ) - A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
17 |
13 16
|
eqtrd |
|- ( ph -> ( tan ` ( ( _pi / 2 ) - A ) ) = ( ( cos ` A ) / ( sin ` A ) ) ) |