Metamath Proof Explorer


Theorem tanhalfpim

Description: The tangent of _pi / 2 minus a number is the cotangent, here represented by cos A / sin A . (Contributed by SN, 2-Sep-2025)

Ref Expression
Hypotheses tanhalfpim.a ( 𝜑𝐴 ∈ ℂ )
tanhalfpim.1 ( 𝜑 → ( sin ‘ 𝐴 ) ≠ 0 )
Assertion tanhalfpim ( 𝜑 → ( tan ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 tanhalfpim.a ( 𝜑𝐴 ∈ ℂ )
2 tanhalfpim.1 ( 𝜑 → ( sin ‘ 𝐴 ) ≠ 0 )
3 picn π ∈ ℂ
4 2cn 2 ∈ ℂ
5 2ne0 2 ≠ 0
6 3 4 5 divcli ( π / 2 ) ∈ ℂ
7 6 a1i ( 𝜑 → ( π / 2 ) ∈ ℂ )
8 7 1 subcld ( 𝜑 → ( ( π / 2 ) − 𝐴 ) ∈ ℂ )
9 coshalfpim ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( sin ‘ 𝐴 ) )
10 1 9 syl ( 𝜑 → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( sin ‘ 𝐴 ) )
11 10 2 eqnetrd ( 𝜑 → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) ≠ 0 )
12 tanval ( ( ( ( π / 2 ) − 𝐴 ) ∈ ℂ ∧ ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) ≠ 0 ) → ( tan ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) / ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) ) )
13 8 11 12 syl2anc ( 𝜑 → ( tan ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) / ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) ) )
14 sinhalfpim ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) )
15 14 9 oveq12d ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) / ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) )
16 1 15 syl ( 𝜑 → ( ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) / ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) )
17 13 16 eqtrd ( 𝜑 → ( tan ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) )