| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgoldbachgtda.o |  |-  O = { z e. ZZ | -. 2 || z } | 
						
							| 2 |  | tgoldbachgtda.n |  |-  ( ph -> N e. O ) | 
						
							| 3 |  | tgoldbachgtda.0 |  |-  ( ph -> ( ; 1 0 ^ ; 2 7 ) <_ N ) | 
						
							| 4 | 2 1 | eleqtrdi |  |-  ( ph -> N e. { z e. ZZ | -. 2 || z } ) | 
						
							| 5 |  | elrabi |  |-  ( N e. { z e. ZZ | -. 2 || z } -> N e. ZZ ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 7 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 8 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 9 | 8 | nn0rei |  |-  ; 1 0 e. RR | 
						
							| 10 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 11 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 12 | 10 11 | deccl |  |-  ; 2 7 e. NN0 | 
						
							| 13 |  | reexpcl |  |-  ( ( ; 1 0 e. RR /\ ; 2 7 e. NN0 ) -> ( ; 1 0 ^ ; 2 7 ) e. RR ) | 
						
							| 14 | 9 12 13 | mp2an |  |-  ( ; 1 0 ^ ; 2 7 ) e. RR | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( ; 1 0 ^ ; 2 7 ) e. RR ) | 
						
							| 16 | 6 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 17 |  | 1re |  |-  1 e. RR | 
						
							| 18 |  | 1lt10 |  |-  1 < ; 1 0 | 
						
							| 19 | 17 9 18 | ltleii |  |-  1 <_ ; 1 0 | 
						
							| 20 |  | expge1 |  |-  ( ( ; 1 0 e. RR /\ ; 2 7 e. NN0 /\ 1 <_ ; 1 0 ) -> 1 <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 21 | 9 12 19 20 | mp3an |  |-  1 <_ ( ; 1 0 ^ ; 2 7 ) | 
						
							| 22 | 21 | a1i |  |-  ( ph -> 1 <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 23 | 7 15 16 22 3 | letrd |  |-  ( ph -> 1 <_ N ) | 
						
							| 24 |  | elnnz1 |  |-  ( N e. NN <-> ( N e. ZZ /\ 1 <_ N ) ) | 
						
							| 25 | 6 23 24 | sylanbrc |  |-  ( ph -> N e. NN ) |