| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgoldbachgtda.o |
|- O = { z e. ZZ | -. 2 || z } |
| 2 |
|
tgoldbachgtda.n |
|- ( ph -> N e. O ) |
| 3 |
|
tgoldbachgtda.0 |
|- ( ph -> ( ; 1 0 ^ ; 2 7 ) <_ N ) |
| 4 |
|
tgoldbachgtda.h |
|- ( ph -> H : NN --> ( 0 [,) +oo ) ) |
| 5 |
|
tgoldbachgtda.k |
|- ( ph -> K : NN --> ( 0 [,) +oo ) ) |
| 6 |
|
tgoldbachgtda.1 |
|- ( ( ph /\ m e. NN ) -> ( K ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ) |
| 7 |
|
tgoldbachgtda.2 |
|- ( ( ph /\ m e. NN ) -> ( H ` m ) <_ ( 1 . _ 4 _ 1 4 ) ) |
| 8 |
|
tgoldbachgtda.3 |
|- ( ph -> ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
| 9 |
1 2 3
|
tgoldbachgnn |
|- ( ph -> N e. NN ) |
| 10 |
9
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 11 |
|
3nn0 |
|- 3 e. NN0 |
| 12 |
11
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 13 |
|
ssidd |
|- ( ph -> NN C_ NN ) |
| 14 |
10 12 13
|
reprfi2 |
|- ( ph -> ( NN ( repr ` 3 ) N ) e. Fin ) |
| 15 |
|
diffi |
|- ( ( NN ( repr ` 3 ) N ) e. Fin -> ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) e. Fin ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) e. Fin ) |
| 17 |
|
difssd |
|- ( ph -> ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) C_ ( NN ( repr ` 3 ) N ) ) |
| 18 |
17
|
sselda |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 19 |
|
vmaf |
|- Lam : NN --> RR |
| 20 |
19
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> Lam : NN --> RR ) |
| 21 |
|
ssidd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> NN C_ NN ) |
| 22 |
10
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> N e. ZZ ) |
| 24 |
11
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 3 e. NN0 ) |
| 25 |
|
simpr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 26 |
21 23 24 25
|
reprf |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n : ( 0 ..^ 3 ) --> NN ) |
| 27 |
|
c0ex |
|- 0 e. _V |
| 28 |
27
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
| 29 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 30 |
28 29
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
| 31 |
30
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 0 e. ( 0 ..^ 3 ) ) |
| 32 |
26 31
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 0 ) e. NN ) |
| 33 |
20 32
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( Lam ` ( n ` 0 ) ) e. RR ) |
| 34 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 35 |
|
fss |
|- ( ( H : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> H : NN --> RR ) |
| 36 |
4 34 35
|
sylancl |
|- ( ph -> H : NN --> RR ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> H : NN --> RR ) |
| 38 |
37 32
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( H ` ( n ` 0 ) ) e. RR ) |
| 39 |
33 38
|
remulcld |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) e. RR ) |
| 40 |
|
1ex |
|- 1 e. _V |
| 41 |
40
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
| 42 |
41 29
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
| 43 |
42
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 1 e. ( 0 ..^ 3 ) ) |
| 44 |
26 43
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 1 ) e. NN ) |
| 45 |
20 44
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( Lam ` ( n ` 1 ) ) e. RR ) |
| 46 |
|
fss |
|- ( ( K : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> K : NN --> RR ) |
| 47 |
5 34 46
|
sylancl |
|- ( ph -> K : NN --> RR ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> K : NN --> RR ) |
| 49 |
48 44
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( K ` ( n ` 1 ) ) e. RR ) |
| 50 |
45 49
|
remulcld |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) e. RR ) |
| 51 |
|
2ex |
|- 2 e. _V |
| 52 |
51
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
| 53 |
52 29
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
| 54 |
53
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 2 e. ( 0 ..^ 3 ) ) |
| 55 |
26 54
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 2 ) e. NN ) |
| 56 |
20 55
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( Lam ` ( n ` 2 ) ) e. RR ) |
| 57 |
48 55
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( K ` ( n ` 2 ) ) e. RR ) |
| 58 |
56 57
|
remulcld |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) e. RR ) |
| 59 |
50 58
|
remulcld |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) e. RR ) |
| 60 |
39 59
|
remulcld |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 61 |
18 60
|
syldan |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 62 |
16 61
|
fsumrecl |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 63 |
|
0nn0 |
|- 0 e. NN0 |
| 64 |
|
qssre |
|- QQ C_ RR |
| 65 |
|
4nn0 |
|- 4 e. NN0 |
| 66 |
|
2nn0 |
|- 2 e. NN0 |
| 67 |
|
nn0ssq |
|- NN0 C_ QQ |
| 68 |
|
8nn0 |
|- 8 e. NN0 |
| 69 |
67 68
|
sselii |
|- 8 e. QQ |
| 70 |
65 69
|
dp2clq |
|- _ 4 8 e. QQ |
| 71 |
66 70
|
dp2clq |
|- _ 2 _ 4 8 e. QQ |
| 72 |
66 71
|
dp2clq |
|- _ 2 _ 2 _ 4 8 e. QQ |
| 73 |
65 72
|
dp2clq |
|- _ 4 _ 2 _ 2 _ 4 8 e. QQ |
| 74 |
63 73
|
dp2clq |
|- _ 0 _ 4 _ 2 _ 2 _ 4 8 e. QQ |
| 75 |
63 74
|
dp2clq |
|- _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. QQ |
| 76 |
63 75
|
dp2clq |
|- _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. QQ |
| 77 |
64 76
|
sselii |
|- _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR |
| 78 |
|
dpcl |
|- ( ( 0 e. NN0 /\ _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR ) -> ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR ) |
| 79 |
63 77 78
|
mp2an |
|- ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR |
| 80 |
79
|
a1i |
|- ( ph -> ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR ) |
| 81 |
9
|
nnred |
|- ( ph -> N e. RR ) |
| 82 |
81
|
resqcld |
|- ( ph -> ( N ^ 2 ) e. RR ) |
| 83 |
80 82
|
remulcld |
|- ( ph -> ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) e. RR ) |
| 84 |
14 60
|
fsumrecl |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 85 |
|
7nn0 |
|- 7 e. NN0 |
| 86 |
11 70
|
dp2clq |
|- _ 3 _ 4 8 e. QQ |
| 87 |
64 86
|
sselii |
|- _ 3 _ 4 8 e. RR |
| 88 |
|
dpcl |
|- ( ( 7 e. NN0 /\ _ 3 _ 4 8 e. RR ) -> ( 7 . _ 3 _ 4 8 ) e. RR ) |
| 89 |
85 87 88
|
mp2an |
|- ( 7 . _ 3 _ 4 8 ) e. RR |
| 90 |
89
|
a1i |
|- ( ph -> ( 7 . _ 3 _ 4 8 ) e. RR ) |
| 91 |
9
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 92 |
91
|
relogcld |
|- ( ph -> ( log ` N ) e. RR ) |
| 93 |
10
|
nn0ge0d |
|- ( ph -> 0 <_ N ) |
| 94 |
81 93
|
resqrtcld |
|- ( ph -> ( sqrt ` N ) e. RR ) |
| 95 |
91
|
sqrtgt0d |
|- ( ph -> 0 < ( sqrt ` N ) ) |
| 96 |
95
|
gt0ne0d |
|- ( ph -> ( sqrt ` N ) =/= 0 ) |
| 97 |
92 94 96
|
redivcld |
|- ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. RR ) |
| 98 |
90 97
|
remulcld |
|- ( ph -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) e. RR ) |
| 99 |
98 82
|
remulcld |
|- ( ph -> ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) e. RR ) |
| 100 |
1 9 3 4 5 6 7
|
hgt750leme |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |
| 101 |
|
2z |
|- 2 e. ZZ |
| 102 |
101
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 103 |
91 102
|
rpexpcld |
|- ( ph -> ( N ^ 2 ) e. RR+ ) |
| 104 |
|
hgt750lem |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) |
| 105 |
10 3 104
|
syl2anc |
|- ( ph -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) |
| 106 |
98 80 103 105
|
ltmul1dd |
|- ( ph -> ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) ) |
| 107 |
62 99 83 100 106
|
lelttrd |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) ) |
| 108 |
36 47 10
|
circlemethhgt |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) = S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
| 109 |
8 108
|
breqtrrd |
|- ( ph -> ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) <_ sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
| 110 |
62 83 84 107 109
|
ltletrd |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) < sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
| 111 |
62 84
|
posdifd |
|- ( ph -> ( sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) < sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <-> 0 < ( sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) - sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) ) ) |
| 112 |
110 111
|
mpbid |
|- ( ph -> 0 < ( sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) - sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) ) |
| 113 |
|
inss2 |
|- ( O i^i Prime ) C_ Prime |
| 114 |
|
prmssnn |
|- Prime C_ NN |
| 115 |
113 114
|
sstri |
|- ( O i^i Prime ) C_ NN |
| 116 |
115
|
a1i |
|- ( ph -> ( O i^i Prime ) C_ NN ) |
| 117 |
13 22 12 116
|
reprss |
|- ( ph -> ( ( O i^i Prime ) ( repr ` 3 ) N ) C_ ( NN ( repr ` 3 ) N ) ) |
| 118 |
14 117
|
ssfid |
|- ( ph -> ( ( O i^i Prime ) ( repr ` 3 ) N ) e. Fin ) |
| 119 |
117
|
sselda |
|- ( ( ph /\ n e. ( ( O i^i Prime ) ( repr ` 3 ) N ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 120 |
60
|
recnd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. CC ) |
| 121 |
119 120
|
syldan |
|- ( ( ph /\ n e. ( ( O i^i Prime ) ( repr ` 3 ) N ) ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. CC ) |
| 122 |
118 121
|
fsumcl |
|- ( ph -> sum_ n e. ( ( O i^i Prime ) ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. CC ) |
| 123 |
62
|
recnd |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. CC ) |
| 124 |
|
disjdif |
|- ( ( ( O i^i Prime ) ( repr ` 3 ) N ) i^i ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) = (/) |
| 125 |
124
|
a1i |
|- ( ph -> ( ( ( O i^i Prime ) ( repr ` 3 ) N ) i^i ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) = (/) ) |
| 126 |
|
undif |
|- ( ( ( O i^i Prime ) ( repr ` 3 ) N ) C_ ( NN ( repr ` 3 ) N ) <-> ( ( ( O i^i Prime ) ( repr ` 3 ) N ) u. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) = ( NN ( repr ` 3 ) N ) ) |
| 127 |
117 126
|
sylib |
|- ( ph -> ( ( ( O i^i Prime ) ( repr ` 3 ) N ) u. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) = ( NN ( repr ` 3 ) N ) ) |
| 128 |
127
|
eqcomd |
|- ( ph -> ( NN ( repr ` 3 ) N ) = ( ( ( O i^i Prime ) ( repr ` 3 ) N ) u. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) ) |
| 129 |
125 128 14 120
|
fsumsplit |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) = ( sum_ n e. ( ( O i^i Prime ) ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) + sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) ) |
| 130 |
122 123 129
|
mvrraddd |
|- ( ph -> ( sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) - sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) = sum_ n e. ( ( O i^i Prime ) ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
| 131 |
112 130
|
breqtrd |
|- ( ph -> 0 < sum_ n e. ( ( O i^i Prime ) ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |