| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 2 |  | 3re |  |-  3 e. RR | 
						
							| 3 |  | 4re |  |-  4 e. RR | 
						
							| 4 |  | 8re |  |-  8 e. RR | 
						
							| 5 | 3 4 | pm3.2i |  |-  ( 4 e. RR /\ 8 e. RR ) | 
						
							| 6 |  | dp2cl |  |-  ( ( 4 e. RR /\ 8 e. RR ) -> _ 4 8 e. RR ) | 
						
							| 7 | 5 6 | ax-mp |  |-  _ 4 8 e. RR | 
						
							| 8 | 2 7 | pm3.2i |  |-  ( 3 e. RR /\ _ 4 8 e. RR ) | 
						
							| 9 |  | dp2cl |  |-  ( ( 3 e. RR /\ _ 4 8 e. RR ) -> _ 3 _ 4 8 e. RR ) | 
						
							| 10 | 8 9 | ax-mp |  |-  _ 3 _ 4 8 e. RR | 
						
							| 11 |  | dpcl |  |-  ( ( 7 e. NN0 /\ _ 3 _ 4 8 e. RR ) -> ( 7 . _ 3 _ 4 8 ) e. RR ) | 
						
							| 12 | 1 10 11 | mp2an |  |-  ( 7 . _ 3 _ 4 8 ) e. RR | 
						
							| 13 | 12 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( 7 . _ 3 _ 4 8 ) e. RR ) | 
						
							| 14 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 15 | 14 | adantr |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> N e. RR ) | 
						
							| 16 |  | 0re |  |-  0 e. RR | 
						
							| 17 | 16 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 e. RR ) | 
						
							| 18 |  | 10re |  |-  ; 1 0 e. RR | 
						
							| 19 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 20 | 19 1 | deccl |  |-  ; 2 7 e. NN0 | 
						
							| 21 |  | reexpcl |  |-  ( ( ; 1 0 e. RR /\ ; 2 7 e. NN0 ) -> ( ; 1 0 ^ ; 2 7 ) e. RR ) | 
						
							| 22 | 18 20 21 | mp2an |  |-  ( ; 1 0 ^ ; 2 7 ) e. RR | 
						
							| 23 | 22 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ; 1 0 ^ ; 2 7 ) e. RR ) | 
						
							| 24 |  | 0lt1 |  |-  0 < 1 | 
						
							| 25 |  | 1nn |  |-  1 e. NN | 
						
							| 26 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 27 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 28 |  | 1re |  |-  1 e. RR | 
						
							| 29 |  | 9re |  |-  9 e. RR | 
						
							| 30 |  | 1lt9 |  |-  1 < 9 | 
						
							| 31 | 28 29 30 | ltleii |  |-  1 <_ 9 | 
						
							| 32 | 25 26 27 31 | declei |  |-  1 <_ ; 1 0 | 
						
							| 33 |  | expge1 |  |-  ( ( ; 1 0 e. RR /\ ; 2 7 e. NN0 /\ 1 <_ ; 1 0 ) -> 1 <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 34 | 18 20 32 33 | mp3an |  |-  1 <_ ( ; 1 0 ^ ; 2 7 ) | 
						
							| 35 | 16 28 22 | ltletri |  |-  ( ( 0 < 1 /\ 1 <_ ( ; 1 0 ^ ; 2 7 ) ) -> 0 < ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 36 | 24 34 35 | mp2an |  |-  0 < ( ; 1 0 ^ ; 2 7 ) | 
						
							| 37 | 36 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 < ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 38 |  | simpr |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ; 1 0 ^ ; 2 7 ) <_ N ) | 
						
							| 39 | 17 23 15 37 38 | ltletrd |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 < N ) | 
						
							| 40 | 15 39 | elrpd |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> N e. RR+ ) | 
						
							| 41 | 40 | relogcld |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( log ` N ) e. RR ) | 
						
							| 42 | 40 | rpge0d |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 <_ N ) | 
						
							| 43 | 15 42 | resqrtcld |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( sqrt ` N ) e. RR ) | 
						
							| 44 | 40 | sqrtgt0d |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 < ( sqrt ` N ) ) | 
						
							| 45 | 17 44 | gtned |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( sqrt ` N ) =/= 0 ) | 
						
							| 46 | 41 43 45 | redivcld |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( log ` N ) / ( sqrt ` N ) ) e. RR ) | 
						
							| 47 | 13 46 | remulcld |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) e. RR ) | 
						
							| 48 |  | elrp |  |-  ( ( ; 1 0 ^ ; 2 7 ) e. RR+ <-> ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ 0 < ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 49 | 22 36 48 | mpbir2an |  |-  ( ; 1 0 ^ ; 2 7 ) e. RR+ | 
						
							| 50 |  | relogcl |  |-  ( ( ; 1 0 ^ ; 2 7 ) e. RR+ -> ( log ` ( ; 1 0 ^ ; 2 7 ) ) e. RR ) | 
						
							| 51 | 49 50 | ax-mp |  |-  ( log ` ( ; 1 0 ^ ; 2 7 ) ) e. RR | 
						
							| 52 | 22 36 | sqrtpclii |  |-  ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) e. RR | 
						
							| 53 | 22 36 | sqrtgt0ii |  |-  0 < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 54 | 16 53 | gtneii |  |-  ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) =/= 0 | 
						
							| 55 | 51 52 54 | redivcli |  |-  ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) e. RR | 
						
							| 56 | 55 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) e. RR ) | 
						
							| 57 | 13 56 | remulcld |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) e. RR ) | 
						
							| 58 |  | qssre |  |-  QQ C_ RR | 
						
							| 59 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 60 |  | nn0ssq |  |-  NN0 C_ QQ | 
						
							| 61 |  | 8nn0 |  |-  8 e. NN0 | 
						
							| 62 | 60 61 | sselii |  |-  8 e. QQ | 
						
							| 63 | 59 62 | dp2clq |  |-  _ 4 8 e. QQ | 
						
							| 64 | 19 63 | dp2clq |  |-  _ 2 _ 4 8 e. QQ | 
						
							| 65 | 19 64 | dp2clq |  |-  _ 2 _ 2 _ 4 8 e. QQ | 
						
							| 66 | 59 65 | dp2clq |  |-  _ 4 _ 2 _ 2 _ 4 8 e. QQ | 
						
							| 67 | 26 66 | dp2clq |  |-  _ 0 _ 4 _ 2 _ 2 _ 4 8 e. QQ | 
						
							| 68 | 26 67 | dp2clq |  |-  _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. QQ | 
						
							| 69 | 26 68 | dp2clq |  |-  _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. QQ | 
						
							| 70 | 58 69 | sselii |  |-  _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR | 
						
							| 71 |  | dpcl |  |-  ( ( 0 e. NN0 /\ _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR ) -> ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR ) | 
						
							| 72 | 26 70 71 | mp2an |  |-  ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR | 
						
							| 73 | 72 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR ) | 
						
							| 74 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 75 |  | 8pos |  |-  0 < 8 | 
						
							| 76 |  | elrp |  |-  ( 8 e. RR+ <-> ( 8 e. RR /\ 0 < 8 ) ) | 
						
							| 77 | 4 75 76 | mpbir2an |  |-  8 e. RR+ | 
						
							| 78 | 59 77 | rpdp2cl |  |-  _ 4 8 e. RR+ | 
						
							| 79 | 74 78 | rpdp2cl |  |-  _ 3 _ 4 8 e. RR+ | 
						
							| 80 | 1 79 | rpdpcl |  |-  ( 7 . _ 3 _ 4 8 ) e. RR+ | 
						
							| 81 |  | elrp |  |-  ( ( 7 . _ 3 _ 4 8 ) e. RR+ <-> ( ( 7 . _ 3 _ 4 8 ) e. RR /\ 0 < ( 7 . _ 3 _ 4 8 ) ) ) | 
						
							| 82 | 80 81 | mpbi |  |-  ( ( 7 . _ 3 _ 4 8 ) e. RR /\ 0 < ( 7 . _ 3 _ 4 8 ) ) | 
						
							| 83 | 82 | simpri |  |-  0 < ( 7 . _ 3 _ 4 8 ) | 
						
							| 84 | 16 12 83 | ltleii |  |-  0 <_ ( 7 . _ 3 _ 4 8 ) | 
						
							| 85 | 84 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 <_ ( 7 . _ 3 _ 4 8 ) ) | 
						
							| 86 | 49 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ; 1 0 ^ ; 2 7 ) e. RR+ ) | 
						
							| 87 |  | 2cn |  |-  2 e. CC | 
						
							| 88 | 87 | mullidi |  |-  ( 1 x. 2 ) = 2 | 
						
							| 89 |  | 2nn |  |-  2 e. NN | 
						
							| 90 | 89 1 27 31 | declei |  |-  1 <_ ; 2 7 | 
						
							| 91 |  | 2pos |  |-  0 < 2 | 
						
							| 92 | 20 | nn0rei |  |-  ; 2 7 e. RR | 
						
							| 93 |  | 2re |  |-  2 e. RR | 
						
							| 94 | 28 92 93 | lemul1i |  |-  ( 0 < 2 -> ( 1 <_ ; 2 7 <-> ( 1 x. 2 ) <_ ( ; 2 7 x. 2 ) ) ) | 
						
							| 95 | 91 94 | ax-mp |  |-  ( 1 <_ ; 2 7 <-> ( 1 x. 2 ) <_ ( ; 2 7 x. 2 ) ) | 
						
							| 96 | 90 95 | mpbi |  |-  ( 1 x. 2 ) <_ ( ; 2 7 x. 2 ) | 
						
							| 97 | 88 96 | eqbrtrri |  |-  2 <_ ( ; 2 7 x. 2 ) | 
						
							| 98 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 99 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 100 |  | egt2lt3 |  |-  ( 2 < _e /\ _e < 3 ) | 
						
							| 101 | 100 | simpri |  |-  _e < 3 | 
						
							| 102 |  | epr |  |-  _e e. RR+ | 
						
							| 103 |  | 3rp |  |-  3 e. RR+ | 
						
							| 104 |  | logltb |  |-  ( ( _e e. RR+ /\ 3 e. RR+ ) -> ( _e < 3 <-> ( log ` _e ) < ( log ` 3 ) ) ) | 
						
							| 105 | 102 103 104 | mp2an |  |-  ( _e < 3 <-> ( log ` _e ) < ( log ` 3 ) ) | 
						
							| 106 | 101 105 | mpbi |  |-  ( log ` _e ) < ( log ` 3 ) | 
						
							| 107 | 99 106 | eqbrtrri |  |-  1 < ( log ` 3 ) | 
						
							| 108 |  | relogcl |  |-  ( 3 e. RR+ -> ( log ` 3 ) e. RR ) | 
						
							| 109 | 103 108 | ax-mp |  |-  ( log ` 3 ) e. RR | 
						
							| 110 | 28 28 109 109 | lt2addi |  |-  ( ( 1 < ( log ` 3 ) /\ 1 < ( log ` 3 ) ) -> ( 1 + 1 ) < ( ( log ` 3 ) + ( log ` 3 ) ) ) | 
						
							| 111 | 107 107 110 | mp2an |  |-  ( 1 + 1 ) < ( ( log ` 3 ) + ( log ` 3 ) ) | 
						
							| 112 |  | 3cn |  |-  3 e. CC | 
						
							| 113 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 114 |  | logmul2 |  |-  ( ( 3 e. CC /\ 3 =/= 0 /\ 3 e. RR+ ) -> ( log ` ( 3 x. 3 ) ) = ( ( log ` 3 ) + ( log ` 3 ) ) ) | 
						
							| 115 | 112 113 103 114 | mp3an |  |-  ( log ` ( 3 x. 3 ) ) = ( ( log ` 3 ) + ( log ` 3 ) ) | 
						
							| 116 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 117 | 116 | fveq2i |  |-  ( log ` ( 3 x. 3 ) ) = ( log ` 9 ) | 
						
							| 118 |  | 9lt10 |  |-  9 < ; 1 0 | 
						
							| 119 | 29 18 118 | ltleii |  |-  9 <_ ; 1 0 | 
						
							| 120 |  | 9pos |  |-  0 < 9 | 
						
							| 121 |  | elrp |  |-  ( 9 e. RR+ <-> ( 9 e. RR /\ 0 < 9 ) ) | 
						
							| 122 | 29 120 121 | mpbir2an |  |-  9 e. RR+ | 
						
							| 123 |  | 10pos |  |-  0 < ; 1 0 | 
						
							| 124 |  | elrp |  |-  ( ; 1 0 e. RR+ <-> ( ; 1 0 e. RR /\ 0 < ; 1 0 ) ) | 
						
							| 125 | 18 123 124 | mpbir2an |  |-  ; 1 0 e. RR+ | 
						
							| 126 |  | logleb |  |-  ( ( 9 e. RR+ /\ ; 1 0 e. RR+ ) -> ( 9 <_ ; 1 0 <-> ( log ` 9 ) <_ ( log ` ; 1 0 ) ) ) | 
						
							| 127 | 122 125 126 | mp2an |  |-  ( 9 <_ ; 1 0 <-> ( log ` 9 ) <_ ( log ` ; 1 0 ) ) | 
						
							| 128 | 119 127 | mpbi |  |-  ( log ` 9 ) <_ ( log ` ; 1 0 ) | 
						
							| 129 | 117 128 | eqbrtri |  |-  ( log ` ( 3 x. 3 ) ) <_ ( log ` ; 1 0 ) | 
						
							| 130 | 115 129 | eqbrtrri |  |-  ( ( log ` 3 ) + ( log ` 3 ) ) <_ ( log ` ; 1 0 ) | 
						
							| 131 | 28 28 | readdcli |  |-  ( 1 + 1 ) e. RR | 
						
							| 132 | 109 109 | readdcli |  |-  ( ( log ` 3 ) + ( log ` 3 ) ) e. RR | 
						
							| 133 |  | relogcl |  |-  ( ; 1 0 e. RR+ -> ( log ` ; 1 0 ) e. RR ) | 
						
							| 134 | 125 133 | ax-mp |  |-  ( log ` ; 1 0 ) e. RR | 
						
							| 135 | 131 132 134 | ltletri |  |-  ( ( ( 1 + 1 ) < ( ( log ` 3 ) + ( log ` 3 ) ) /\ ( ( log ` 3 ) + ( log ` 3 ) ) <_ ( log ` ; 1 0 ) ) -> ( 1 + 1 ) < ( log ` ; 1 0 ) ) | 
						
							| 136 | 111 130 135 | mp2an |  |-  ( 1 + 1 ) < ( log ` ; 1 0 ) | 
						
							| 137 | 98 136 | eqbrtrri |  |-  2 < ( log ` ; 1 0 ) | 
						
							| 138 | 93 134 | ltlei |  |-  ( 2 < ( log ` ; 1 0 ) -> 2 <_ ( log ` ; 1 0 ) ) | 
						
							| 139 | 137 138 | ax-mp |  |-  2 <_ ( log ` ; 1 0 ) | 
						
							| 140 | 16 29 120 | ltleii |  |-  0 <_ 9 | 
						
							| 141 | 89 1 26 140 | decltdi |  |-  0 < ; 2 7 | 
						
							| 142 | 93 134 92 | lemul2i |  |-  ( 0 < ; 2 7 -> ( 2 <_ ( log ` ; 1 0 ) <-> ( ; 2 7 x. 2 ) <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) ) ) | 
						
							| 143 | 141 142 | ax-mp |  |-  ( 2 <_ ( log ` ; 1 0 ) <-> ( ; 2 7 x. 2 ) <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) ) | 
						
							| 144 | 139 143 | mpbi |  |-  ( ; 2 7 x. 2 ) <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) | 
						
							| 145 | 92 93 | remulcli |  |-  ( ; 2 7 x. 2 ) e. RR | 
						
							| 146 | 20 | nn0zi |  |-  ; 2 7 e. ZZ | 
						
							| 147 |  | relogexp |  |-  ( ( ; 1 0 e. RR+ /\ ; 2 7 e. ZZ ) -> ( log ` ( ; 1 0 ^ ; 2 7 ) ) = ( ; 2 7 x. ( log ` ; 1 0 ) ) ) | 
						
							| 148 | 125 146 147 | mp2an |  |-  ( log ` ( ; 1 0 ^ ; 2 7 ) ) = ( ; 2 7 x. ( log ` ; 1 0 ) ) | 
						
							| 149 | 148 51 | eqeltrri |  |-  ( ; 2 7 x. ( log ` ; 1 0 ) ) e. RR | 
						
							| 150 | 93 145 149 | letri |  |-  ( ( 2 <_ ( ; 2 7 x. 2 ) /\ ( ; 2 7 x. 2 ) <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) ) -> 2 <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) ) | 
						
							| 151 | 97 144 150 | mp2an |  |-  2 <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) | 
						
							| 152 |  | relogef |  |-  ( 2 e. RR -> ( log ` ( exp ` 2 ) ) = 2 ) | 
						
							| 153 | 93 152 | ax-mp |  |-  ( log ` ( exp ` 2 ) ) = 2 | 
						
							| 154 | 151 153 148 | 3brtr4i |  |-  ( log ` ( exp ` 2 ) ) <_ ( log ` ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 155 |  | rpefcl |  |-  ( 2 e. RR -> ( exp ` 2 ) e. RR+ ) | 
						
							| 156 | 93 155 | ax-mp |  |-  ( exp ` 2 ) e. RR+ | 
						
							| 157 |  | logleb |  |-  ( ( ( exp ` 2 ) e. RR+ /\ ( ; 1 0 ^ ; 2 7 ) e. RR+ ) -> ( ( exp ` 2 ) <_ ( ; 1 0 ^ ; 2 7 ) <-> ( log ` ( exp ` 2 ) ) <_ ( log ` ( ; 1 0 ^ ; 2 7 ) ) ) ) | 
						
							| 158 | 156 49 157 | mp2an |  |-  ( ( exp ` 2 ) <_ ( ; 1 0 ^ ; 2 7 ) <-> ( log ` ( exp ` 2 ) ) <_ ( log ` ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 159 | 154 158 | mpbir |  |-  ( exp ` 2 ) <_ ( ; 1 0 ^ ; 2 7 ) | 
						
							| 160 | 159 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( exp ` 2 ) <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 161 | 86 40 160 38 | logdivsqrle |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( log ` N ) / ( sqrt ` N ) ) <_ ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) | 
						
							| 162 | 46 56 13 85 161 | lemul2ad |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) <_ ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) ) | 
						
							| 163 |  | 3lt10 |  |-  3 < ; 1 0 | 
						
							| 164 |  | 4lt10 |  |-  4 < ; 1 0 | 
						
							| 165 |  | 8lt10 |  |-  8 < ; 1 0 | 
						
							| 166 | 59 77 164 165 | dp2lt10 |  |-  _ 4 8 < ; 1 0 | 
						
							| 167 | 74 78 163 166 | dp2lt10 |  |-  _ 3 _ 4 8 < ; 1 0 | 
						
							| 168 |  | 7p1e8 |  |-  ( 7 + 1 ) = 8 | 
						
							| 169 | 1 79 61 167 168 | dplti |  |-  ( 7 . _ 3 _ 4 8 ) < 8 | 
						
							| 170 | 58 62 | sselii |  |-  8 e. RR | 
						
							| 171 | 12 170 18 | lttri |  |-  ( ( ( 7 . _ 3 _ 4 8 ) < 8 /\ 8 < ; 1 0 ) -> ( 7 . _ 3 _ 4 8 ) < ; 1 0 ) | 
						
							| 172 | 169 165 171 | mp2an |  |-  ( 7 . _ 3 _ 4 8 ) < ; 1 0 | 
						
							| 173 | 27 26 | deccl |  |-  ; 1 0 e. NN0 | 
						
							| 174 | 173 | numexp0 |  |-  ( ; 1 0 ^ 0 ) = 1 | 
						
							| 175 |  | 0z |  |-  0 e. ZZ | 
						
							| 176 | 18 175 146 | 3pm3.2i |  |-  ( ; 1 0 e. RR /\ 0 e. ZZ /\ ; 2 7 e. ZZ ) | 
						
							| 177 |  | 1lt10 |  |-  1 < ; 1 0 | 
						
							| 178 | 177 141 | pm3.2i |  |-  ( 1 < ; 1 0 /\ 0 < ; 2 7 ) | 
						
							| 179 |  | ltexp2a |  |-  ( ( ( ; 1 0 e. RR /\ 0 e. ZZ /\ ; 2 7 e. ZZ ) /\ ( 1 < ; 1 0 /\ 0 < ; 2 7 ) ) -> ( ; 1 0 ^ 0 ) < ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 180 | 176 178 179 | mp2an |  |-  ( ; 1 0 ^ 0 ) < ( ; 1 0 ^ ; 2 7 ) | 
						
							| 181 | 174 180 | eqbrtrri |  |-  1 < ( ; 1 0 ^ ; 2 7 ) | 
						
							| 182 |  | loggt0b |  |-  ( ( ; 1 0 ^ ; 2 7 ) e. RR+ -> ( 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) <-> 1 < ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 183 | 49 182 | ax-mp |  |-  ( 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) <-> 1 < ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 184 | 181 183 | mpbir |  |-  0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 185 | 51 52 | divgt0i |  |-  ( ( 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) /\ 0 < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) -> 0 < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) | 
						
							| 186 | 184 53 185 | mp2an |  |-  0 < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 187 | 12 18 55 | ltmul1i |  |-  ( 0 < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) -> ( ( 7 . _ 3 _ 4 8 ) < ; 1 0 <-> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) ) ) | 
						
							| 188 | 186 187 | ax-mp |  |-  ( ( 7 . _ 3 _ 4 8 ) < ; 1 0 <-> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) ) | 
						
							| 189 | 172 188 | mpbi |  |-  ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) | 
						
							| 190 | 18 | recni |  |-  ; 1 0 e. CC | 
						
							| 191 |  | expmul |  |-  ( ( ; 1 0 e. CC /\ 7 e. NN0 /\ 2 e. NN0 ) -> ( ; 1 0 ^ ( 7 x. 2 ) ) = ( ( ; 1 0 ^ 7 ) ^ 2 ) ) | 
						
							| 192 | 190 1 19 191 | mp3an |  |-  ( ; 1 0 ^ ( 7 x. 2 ) ) = ( ( ; 1 0 ^ 7 ) ^ 2 ) | 
						
							| 193 |  | 7t2e14 |  |-  ( 7 x. 2 ) = ; 1 4 | 
						
							| 194 | 193 | oveq2i |  |-  ( ; 1 0 ^ ( 7 x. 2 ) ) = ( ; 1 0 ^ ; 1 4 ) | 
						
							| 195 | 192 194 | eqtr3i |  |-  ( ( ; 1 0 ^ 7 ) ^ 2 ) = ( ; 1 0 ^ ; 1 4 ) | 
						
							| 196 | 195 | fveq2i |  |-  ( sqrt ` ( ( ; 1 0 ^ 7 ) ^ 2 ) ) = ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) | 
						
							| 197 |  | reexpcl |  |-  ( ( ; 1 0 e. RR /\ 7 e. NN0 ) -> ( ; 1 0 ^ 7 ) e. RR ) | 
						
							| 198 | 18 1 197 | mp2an |  |-  ( ; 1 0 ^ 7 ) e. RR | 
						
							| 199 | 1 | nn0zi |  |-  7 e. ZZ | 
						
							| 200 |  | expgt0 |  |-  ( ( ; 1 0 e. RR /\ 7 e. ZZ /\ 0 < ; 1 0 ) -> 0 < ( ; 1 0 ^ 7 ) ) | 
						
							| 201 | 18 199 123 200 | mp3an |  |-  0 < ( ; 1 0 ^ 7 ) | 
						
							| 202 | 16 198 201 | ltleii |  |-  0 <_ ( ; 1 0 ^ 7 ) | 
						
							| 203 |  | sqrtsq |  |-  ( ( ( ; 1 0 ^ 7 ) e. RR /\ 0 <_ ( ; 1 0 ^ 7 ) ) -> ( sqrt ` ( ( ; 1 0 ^ 7 ) ^ 2 ) ) = ( ; 1 0 ^ 7 ) ) | 
						
							| 204 | 198 202 203 | mp2an |  |-  ( sqrt ` ( ( ; 1 0 ^ 7 ) ^ 2 ) ) = ( ; 1 0 ^ 7 ) | 
						
							| 205 | 196 204 | eqtr3i |  |-  ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) = ( ; 1 0 ^ 7 ) | 
						
							| 206 | 27 59 | deccl |  |-  ; 1 4 e. NN0 | 
						
							| 207 | 206 | nn0zi |  |-  ; 1 4 e. ZZ | 
						
							| 208 | 18 207 146 | 3pm3.2i |  |-  ( ; 1 0 e. RR /\ ; 1 4 e. ZZ /\ ; 2 7 e. ZZ ) | 
						
							| 209 |  | 1lt2 |  |-  1 < 2 | 
						
							| 210 | 27 19 59 1 164 209 | decltc |  |-  ; 1 4 < ; 2 7 | 
						
							| 211 | 177 210 | pm3.2i |  |-  ( 1 < ; 1 0 /\ ; 1 4 < ; 2 7 ) | 
						
							| 212 |  | ltexp2a |  |-  ( ( ( ; 1 0 e. RR /\ ; 1 4 e. ZZ /\ ; 2 7 e. ZZ ) /\ ( 1 < ; 1 0 /\ ; 1 4 < ; 2 7 ) ) -> ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 213 | 208 211 212 | mp2an |  |-  ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) | 
						
							| 214 |  | reexpcl |  |-  ( ( ; 1 0 e. RR /\ ; 1 4 e. NN0 ) -> ( ; 1 0 ^ ; 1 4 ) e. RR ) | 
						
							| 215 | 18 206 214 | mp2an |  |-  ( ; 1 0 ^ ; 1 4 ) e. RR | 
						
							| 216 |  | expgt0 |  |-  ( ( ; 1 0 e. RR /\ ; 1 4 e. ZZ /\ 0 < ; 1 0 ) -> 0 < ( ; 1 0 ^ ; 1 4 ) ) | 
						
							| 217 | 18 207 123 216 | mp3an |  |-  0 < ( ; 1 0 ^ ; 1 4 ) | 
						
							| 218 | 16 215 217 | ltleii |  |-  0 <_ ( ; 1 0 ^ ; 1 4 ) | 
						
							| 219 | 215 218 | pm3.2i |  |-  ( ( ; 1 0 ^ ; 1 4 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 1 4 ) ) | 
						
							| 220 | 16 22 36 | ltleii |  |-  0 <_ ( ; 1 0 ^ ; 2 7 ) | 
						
							| 221 | 22 220 | pm3.2i |  |-  ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 222 |  | sqrtlt |  |-  ( ( ( ( ; 1 0 ^ ; 1 4 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 1 4 ) ) /\ ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 2 7 ) ) ) -> ( ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) <-> ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) | 
						
							| 223 | 219 221 222 | mp2an |  |-  ( ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) <-> ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 224 | 213 223 | mpbi |  |-  ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 225 | 205 224 | eqbrtrri |  |-  ( ; 1 0 ^ 7 ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 226 | 198 201 | pm3.2i |  |-  ( ( ; 1 0 ^ 7 ) e. RR /\ 0 < ( ; 1 0 ^ 7 ) ) | 
						
							| 227 | 52 53 | pm3.2i |  |-  ( ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) e. RR /\ 0 < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 228 | 51 184 | pm3.2i |  |-  ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) e. RR /\ 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 229 |  | ltdiv2 |  |-  ( ( ( ( ; 1 0 ^ 7 ) e. RR /\ 0 < ( ; 1 0 ^ 7 ) ) /\ ( ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) e. RR /\ 0 < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) /\ ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) e. RR /\ 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) ) ) -> ( ( ; 1 0 ^ 7 ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) ) ) | 
						
							| 230 | 226 227 228 229 | mp3an |  |-  ( ( ; 1 0 ^ 7 ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) ) | 
						
							| 231 | 225 230 | mpbi |  |-  ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) | 
						
							| 232 |  | 6nn |  |-  6 e. NN | 
						
							| 233 | 232 | nngt0i |  |-  0 < 6 | 
						
							| 234 | 27 26 232 233 | declt |  |-  ; 1 0 < ; 1 6 | 
						
							| 235 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 236 | 27 235 | deccl |  |-  ; 1 6 e. NN0 | 
						
							| 237 | 236 | nn0rei |  |-  ; 1 6 e. RR | 
						
							| 238 | 25 235 26 123 | declti |  |-  0 < ; 1 6 | 
						
							| 239 |  | elrp |  |-  ( ; 1 6 e. RR+ <-> ( ; 1 6 e. RR /\ 0 < ; 1 6 ) ) | 
						
							| 240 | 237 238 239 | mpbir2an |  |-  ; 1 6 e. RR+ | 
						
							| 241 |  | logltb |  |-  ( ( ; 1 0 e. RR+ /\ ; 1 6 e. RR+ ) -> ( ; 1 0 < ; 1 6 <-> ( log ` ; 1 0 ) < ( log ` ; 1 6 ) ) ) | 
						
							| 242 | 125 240 241 | mp2an |  |-  ( ; 1 0 < ; 1 6 <-> ( log ` ; 1 0 ) < ( log ` ; 1 6 ) ) | 
						
							| 243 | 234 242 | mpbi |  |-  ( log ` ; 1 0 ) < ( log ` ; 1 6 ) | 
						
							| 244 |  | 2exp4 |  |-  ( 2 ^ 4 ) = ; 1 6 | 
						
							| 245 | 244 | fveq2i |  |-  ( log ` ( 2 ^ 4 ) ) = ( log ` ; 1 6 ) | 
						
							| 246 |  | 2rp |  |-  2 e. RR+ | 
						
							| 247 | 59 | nn0zi |  |-  4 e. ZZ | 
						
							| 248 |  | relogexp |  |-  ( ( 2 e. RR+ /\ 4 e. ZZ ) -> ( log ` ( 2 ^ 4 ) ) = ( 4 x. ( log ` 2 ) ) ) | 
						
							| 249 | 246 247 248 | mp2an |  |-  ( log ` ( 2 ^ 4 ) ) = ( 4 x. ( log ` 2 ) ) | 
						
							| 250 | 245 249 | eqtr3i |  |-  ( log ` ; 1 6 ) = ( 4 x. ( log ` 2 ) ) | 
						
							| 251 | 243 250 | breqtri |  |-  ( log ` ; 1 0 ) < ( 4 x. ( log ` 2 ) ) | 
						
							| 252 | 100 | simpli |  |-  2 < _e | 
						
							| 253 |  | logltb |  |-  ( ( 2 e. RR+ /\ _e e. RR+ ) -> ( 2 < _e <-> ( log ` 2 ) < ( log ` _e ) ) ) | 
						
							| 254 | 246 102 253 | mp2an |  |-  ( 2 < _e <-> ( log ` 2 ) < ( log ` _e ) ) | 
						
							| 255 | 252 254 | mpbi |  |-  ( log ` 2 ) < ( log ` _e ) | 
						
							| 256 | 255 99 | breqtri |  |-  ( log ` 2 ) < 1 | 
						
							| 257 |  | 4pos |  |-  0 < 4 | 
						
							| 258 |  | relogcl |  |-  ( 2 e. RR+ -> ( log ` 2 ) e. RR ) | 
						
							| 259 | 246 258 | ax-mp |  |-  ( log ` 2 ) e. RR | 
						
							| 260 | 259 28 3 | ltmul2i |  |-  ( 0 < 4 -> ( ( log ` 2 ) < 1 <-> ( 4 x. ( log ` 2 ) ) < ( 4 x. 1 ) ) ) | 
						
							| 261 | 257 260 | ax-mp |  |-  ( ( log ` 2 ) < 1 <-> ( 4 x. ( log ` 2 ) ) < ( 4 x. 1 ) ) | 
						
							| 262 | 256 261 | mpbi |  |-  ( 4 x. ( log ` 2 ) ) < ( 4 x. 1 ) | 
						
							| 263 |  | 4cn |  |-  4 e. CC | 
						
							| 264 | 263 | mulridi |  |-  ( 4 x. 1 ) = 4 | 
						
							| 265 | 262 264 | breqtri |  |-  ( 4 x. ( log ` 2 ) ) < 4 | 
						
							| 266 | 3 259 | remulcli |  |-  ( 4 x. ( log ` 2 ) ) e. RR | 
						
							| 267 | 134 266 3 | lttri |  |-  ( ( ( log ` ; 1 0 ) < ( 4 x. ( log ` 2 ) ) /\ ( 4 x. ( log ` 2 ) ) < 4 ) -> ( log ` ; 1 0 ) < 4 ) | 
						
							| 268 | 251 265 267 | mp2an |  |-  ( log ` ; 1 0 ) < 4 | 
						
							| 269 | 134 3 92 | ltmul2i |  |-  ( 0 < ; 2 7 -> ( ( log ` ; 1 0 ) < 4 <-> ( ; 2 7 x. ( log ` ; 1 0 ) ) < ( ; 2 7 x. 4 ) ) ) | 
						
							| 270 | 141 269 | ax-mp |  |-  ( ( log ` ; 1 0 ) < 4 <-> ( ; 2 7 x. ( log ` ; 1 0 ) ) < ( ; 2 7 x. 4 ) ) | 
						
							| 271 | 268 270 | mpbi |  |-  ( ; 2 7 x. ( log ` ; 1 0 ) ) < ( ; 2 7 x. 4 ) | 
						
							| 272 | 148 271 | eqbrtri |  |-  ( log ` ( ; 1 0 ^ ; 2 7 ) ) < ( ; 2 7 x. 4 ) | 
						
							| 273 | 92 3 | remulcli |  |-  ( ; 2 7 x. 4 ) e. RR | 
						
							| 274 | 51 273 198 | ltdiv1i |  |-  ( 0 < ( ; 1 0 ^ 7 ) -> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) < ( ; 2 7 x. 4 ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) ) | 
						
							| 275 | 201 274 | ax-mp |  |-  ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) < ( ; 2 7 x. 4 ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) | 
						
							| 276 | 272 275 | mpbi |  |-  ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) | 
						
							| 277 | 16 201 | gtneii |  |-  ( ; 1 0 ^ 7 ) =/= 0 | 
						
							| 278 | 51 198 277 | redivcli |  |-  ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) e. RR | 
						
							| 279 | 273 198 277 | redivcli |  |-  ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) e. RR | 
						
							| 280 | 55 278 279 | lttri |  |-  ( ( ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) /\ ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) -> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) | 
						
							| 281 | 231 276 280 | mp2an |  |-  ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) | 
						
							| 282 |  | 7lt10 |  |-  7 < ; 1 0 | 
						
							| 283 |  | 2lt10 |  |-  2 < ; 1 0 | 
						
							| 284 | 19 173 1 26 282 283 | decltc |  |-  ; 2 7 < ; ; 1 0 0 | 
						
							| 285 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 286 | 285 | decnncl2 |  |-  ; ; 1 0 0 e. NN | 
						
							| 287 | 286 | nnrei |  |-  ; ; 1 0 0 e. RR | 
						
							| 288 | 92 287 3 | ltmul1i |  |-  ( 0 < 4 -> ( ; 2 7 < ; ; 1 0 0 <-> ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) ) ) | 
						
							| 289 | 257 288 | ax-mp |  |-  ( ; 2 7 < ; ; 1 0 0 <-> ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) ) | 
						
							| 290 | 284 289 | mpbi |  |-  ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) | 
						
							| 291 | 287 3 | remulcli |  |-  ( ; ; 1 0 0 x. 4 ) e. RR | 
						
							| 292 | 273 291 198 | ltdiv1i |  |-  ( 0 < ( ; 1 0 ^ 7 ) -> ( ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) <-> ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) ) | 
						
							| 293 | 201 292 | ax-mp |  |-  ( ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) <-> ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) | 
						
							| 294 | 290 293 | mpbi |  |-  ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) | 
						
							| 295 |  | 8nn |  |-  8 e. NN | 
						
							| 296 |  | nnrp |  |-  ( 8 e. NN -> 8 e. RR+ ) | 
						
							| 297 | 295 296 | ax-mp |  |-  8 e. RR+ | 
						
							| 298 | 59 297 | rpdp2cl |  |-  _ 4 8 e. RR+ | 
						
							| 299 | 19 298 | rpdp2cl |  |-  _ 2 _ 4 8 e. RR+ | 
						
							| 300 | 19 299 | rpdp2cl |  |-  _ 2 _ 2 _ 4 8 e. RR+ | 
						
							| 301 | 59 300 | dpgti |  |-  4 < ( 4 . _ 2 _ 2 _ 4 8 ) | 
						
							| 302 | 72 | recni |  |-  ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. CC | 
						
							| 303 | 198 | recni |  |-  ( ; 1 0 ^ 7 ) e. CC | 
						
							| 304 | 302 303 | mulcli |  |-  ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) e. CC | 
						
							| 305 | 16 123 | gtneii |  |-  ; 1 0 =/= 0 | 
						
							| 306 | 190 305 | pm3.2i |  |-  ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) | 
						
							| 307 | 287 | recni |  |-  ; ; 1 0 0 e. CC | 
						
							| 308 | 286 | nnne0i |  |-  ; ; 1 0 0 =/= 0 | 
						
							| 309 | 307 308 | pm3.2i |  |-  ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) | 
						
							| 310 |  | divdiv1 |  |-  ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) e. CC /\ ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) /\ ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) ) -> ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ; 1 0 ) / ; ; 1 0 0 ) = ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ( ; 1 0 x. ; ; 1 0 0 ) ) ) | 
						
							| 311 | 304 306 309 310 | mp3an |  |-  ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ; 1 0 ) / ; ; 1 0 0 ) = ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ( ; 1 0 x. ; ; 1 0 0 ) ) | 
						
							| 312 | 302 303 190 305 | div23i |  |-  ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ; 1 0 ) = ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) | 
						
							| 313 | 312 | oveq1i |  |-  ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ; 1 0 ) / ; ; 1 0 0 ) = ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) | 
						
							| 314 | 190 307 | mulcli |  |-  ( ; 1 0 x. ; ; 1 0 0 ) e. CC | 
						
							| 315 | 190 307 305 308 | mulne0i |  |-  ( ; 1 0 x. ; ; 1 0 0 ) =/= 0 | 
						
							| 316 | 302 303 314 315 | divassi |  |-  ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ( ; 1 0 x. ; ; 1 0 0 ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ( ; 1 0 ^ 7 ) / ( ; 1 0 x. ; ; 1 0 0 ) ) ) | 
						
							| 317 |  | expp1 |  |-  ( ( ; 1 0 e. CC /\ 2 e. NN0 ) -> ( ; 1 0 ^ ( 2 + 1 ) ) = ( ( ; 1 0 ^ 2 ) x. ; 1 0 ) ) | 
						
							| 318 | 190 19 317 | mp2an |  |-  ( ; 1 0 ^ ( 2 + 1 ) ) = ( ( ; 1 0 ^ 2 ) x. ; 1 0 ) | 
						
							| 319 |  | sq10 |  |-  ( ; 1 0 ^ 2 ) = ; ; 1 0 0 | 
						
							| 320 | 319 | oveq1i |  |-  ( ( ; 1 0 ^ 2 ) x. ; 1 0 ) = ( ; ; 1 0 0 x. ; 1 0 ) | 
						
							| 321 | 307 190 | mulcomi |  |-  ( ; ; 1 0 0 x. ; 1 0 ) = ( ; 1 0 x. ; ; 1 0 0 ) | 
						
							| 322 | 318 320 321 | 3eqtrri |  |-  ( ; 1 0 x. ; ; 1 0 0 ) = ( ; 1 0 ^ ( 2 + 1 ) ) | 
						
							| 323 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 324 | 323 | oveq2i |  |-  ( ; 1 0 ^ ( 2 + 1 ) ) = ( ; 1 0 ^ 3 ) | 
						
							| 325 | 322 324 | eqtri |  |-  ( ; 1 0 x. ; ; 1 0 0 ) = ( ; 1 0 ^ 3 ) | 
						
							| 326 | 325 | oveq2i |  |-  ( ( ; 1 0 ^ 7 ) / ( ; 1 0 x. ; ; 1 0 0 ) ) = ( ( ; 1 0 ^ 7 ) / ( ; 1 0 ^ 3 ) ) | 
						
							| 327 | 74 | nn0zi |  |-  3 e. ZZ | 
						
							| 328 | 199 327 | pm3.2i |  |-  ( 7 e. ZZ /\ 3 e. ZZ ) | 
						
							| 329 |  | expsub |  |-  ( ( ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) /\ ( 7 e. ZZ /\ 3 e. ZZ ) ) -> ( ; 1 0 ^ ( 7 - 3 ) ) = ( ( ; 1 0 ^ 7 ) / ( ; 1 0 ^ 3 ) ) ) | 
						
							| 330 | 306 328 329 | mp2an |  |-  ( ; 1 0 ^ ( 7 - 3 ) ) = ( ( ; 1 0 ^ 7 ) / ( ; 1 0 ^ 3 ) ) | 
						
							| 331 |  | 7cn |  |-  7 e. CC | 
						
							| 332 |  | 4p3e7 |  |-  ( 4 + 3 ) = 7 | 
						
							| 333 | 263 112 332 | addcomli |  |-  ( 3 + 4 ) = 7 | 
						
							| 334 | 331 112 263 333 | subaddrii |  |-  ( 7 - 3 ) = 4 | 
						
							| 335 | 334 | oveq2i |  |-  ( ; 1 0 ^ ( 7 - 3 ) ) = ( ; 1 0 ^ 4 ) | 
						
							| 336 | 326 330 335 | 3eqtr2i |  |-  ( ( ; 1 0 ^ 7 ) / ( ; 1 0 x. ; ; 1 0 0 ) ) = ( ; 1 0 ^ 4 ) | 
						
							| 337 | 336 | oveq2i |  |-  ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ( ; 1 0 ^ 7 ) / ( ; 1 0 x. ; ; 1 0 0 ) ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 4 ) ) | 
						
							| 338 | 173 | numexp1 |  |-  ( ; 1 0 ^ 1 ) = ; 1 0 | 
						
							| 339 | 338 | oveq2i |  |-  ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 1 ) ) = ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ; 1 0 ) | 
						
							| 340 | 59 300 | rpdp2cl |  |-  _ 4 _ 2 _ 2 _ 4 8 e. RR+ | 
						
							| 341 | 25 | nnzi |  |-  1 e. ZZ | 
						
							| 342 | 89 | nnzi |  |-  2 e. ZZ | 
						
							| 343 | 26 340 98 341 342 | dpexpp1 |  |-  ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 1 ) ) = ( ( 0 . _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 2 ) ) | 
						
							| 344 | 26 340 | rpdp2cl |  |-  _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR+ | 
						
							| 345 | 26 344 323 342 327 | dpexpp1 |  |-  ( ( 0 . _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 2 ) ) = ( ( 0 . _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 3 ) ) | 
						
							| 346 | 26 344 | rpdp2cl |  |-  _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR+ | 
						
							| 347 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 348 | 26 346 347 327 247 | dpexpp1 |  |-  ( ( 0 . _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 3 ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 4 ) ) | 
						
							| 349 | 343 345 348 | 3eqtri |  |-  ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 1 ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 4 ) ) | 
						
							| 350 | 59 300 | 0dp2dp |  |-  ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ; 1 0 ) = ( 4 . _ 2 _ 2 _ 4 8 ) | 
						
							| 351 | 339 349 350 | 3eqtr3i |  |-  ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 4 ) ) = ( 4 . _ 2 _ 2 _ 4 8 ) | 
						
							| 352 | 316 337 351 | 3eqtri |  |-  ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ( ; 1 0 x. ; ; 1 0 0 ) ) = ( 4 . _ 2 _ 2 _ 4 8 ) | 
						
							| 353 | 311 313 352 | 3eqtr3i |  |-  ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) = ( 4 . _ 2 _ 2 _ 4 8 ) | 
						
							| 354 | 301 353 | breqtrri |  |-  4 < ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) | 
						
							| 355 | 72 18 305 | redivcli |  |-  ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) e. RR | 
						
							| 356 | 355 198 | remulcli |  |-  ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) e. RR | 
						
							| 357 | 286 | nngt0i |  |-  0 < ; ; 1 0 0 | 
						
							| 358 | 287 357 | pm3.2i |  |-  ( ; ; 1 0 0 e. RR /\ 0 < ; ; 1 0 0 ) | 
						
							| 359 |  | ltmuldiv2 |  |-  ( ( 4 e. RR /\ ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) e. RR /\ ( ; ; 1 0 0 e. RR /\ 0 < ; ; 1 0 0 ) ) -> ( ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) <-> 4 < ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) ) ) | 
						
							| 360 | 3 356 358 359 | mp3an |  |-  ( ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) <-> 4 < ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) ) | 
						
							| 361 | 354 360 | mpbir |  |-  ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) | 
						
							| 362 |  | ltdivmul2 |  |-  ( ( ( ; ; 1 0 0 x. 4 ) e. RR /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) e. RR /\ ( ( ; 1 0 ^ 7 ) e. RR /\ 0 < ( ; 1 0 ^ 7 ) ) ) -> ( ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) <-> ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) ) ) | 
						
							| 363 | 291 355 226 362 | mp3an |  |-  ( ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) <-> ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) ) | 
						
							| 364 | 361 363 | mpbir |  |-  ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) | 
						
							| 365 | 291 198 277 | redivcli |  |-  ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) e. RR | 
						
							| 366 | 279 365 355 | lttri |  |-  ( ( ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) /\ ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) -> ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) | 
						
							| 367 | 294 364 366 | mp2an |  |-  ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) | 
						
							| 368 | 226 | simpli |  |-  ( ; 1 0 ^ 7 ) e. RR | 
						
							| 369 | 273 368 277 | redivcli |  |-  ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) e. RR | 
						
							| 370 | 55 369 355 | lttri |  |-  ( ( ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) /\ ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) -> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) | 
						
							| 371 | 281 367 370 | mp2an |  |-  ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) | 
						
							| 372 | 125 124 | mpbi |  |-  ( ; 1 0 e. RR /\ 0 < ; 1 0 ) | 
						
							| 373 |  | ltmuldiv2 |  |-  ( ( ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) e. RR /\ ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR /\ ( ; 1 0 e. RR /\ 0 < ; 1 0 ) ) -> ( ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) ) | 
						
							| 374 | 55 72 372 373 | mp3an |  |-  ( ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) | 
						
							| 375 | 371 374 | mpbir |  |-  ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) | 
						
							| 376 | 12 55 | remulcli |  |-  ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) e. RR | 
						
							| 377 | 18 55 | remulcli |  |-  ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) e. RR | 
						
							| 378 | 376 377 72 | lttri |  |-  ( ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) /\ ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) | 
						
							| 379 | 189 375 378 | mp2an |  |-  ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) | 
						
							| 380 | 379 | a1i |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) | 
						
							| 381 | 47 57 73 162 380 | lelttrd |  |-  ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) |