Step |
Hyp |
Ref |
Expression |
1 |
|
tgoldbachgtda.o |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
2 |
|
tgoldbachgtda.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑂 ) |
3 |
|
tgoldbachgtda.0 |
⊢ ( 𝜑 → ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑁 ) |
4 |
|
tgoldbachgtda.h |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 0 [,) +∞ ) ) |
5 |
|
tgoldbachgtda.k |
⊢ ( 𝜑 → 𝐾 : ℕ ⟶ ( 0 [,) +∞ ) ) |
6 |
|
tgoldbachgtda.1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐾 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ) |
7 |
|
tgoldbachgtda.2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ) |
8 |
|
tgoldbachgtda.3 |
⊢ ( 𝜑 → ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · 𝐻 ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝐾 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |
9 |
1 2 3
|
tgoldbachgnn |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
10 |
9
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
11 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
12 |
11
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
13 |
|
ssidd |
⊢ ( 𝜑 → ℕ ⊆ ℕ ) |
14 |
10 12 13
|
reprfi2 |
⊢ ( 𝜑 → ( ℕ ( repr ‘ 3 ) 𝑁 ) ∈ Fin ) |
15 |
|
diffi |
⊢ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∈ Fin → ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ∈ Fin ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ∈ Fin ) |
17 |
|
difssd |
⊢ ( 𝜑 → ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ⊆ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
18 |
17
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
19 |
|
vmaf |
⊢ Λ : ℕ ⟶ ℝ |
20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → Λ : ℕ ⟶ ℝ ) |
21 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ℕ ⊆ ℕ ) |
22 |
10
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝑁 ∈ ℤ ) |
24 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 3 ∈ ℕ0 ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
26 |
21 23 24 25
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝑛 : ( 0 ..^ 3 ) ⟶ ℕ ) |
27 |
|
c0ex |
⊢ 0 ∈ V |
28 |
27
|
tpid1 |
⊢ 0 ∈ { 0 , 1 , 2 } |
29 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
30 |
28 29
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 3 ) |
31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 0 ∈ ( 0 ..^ 3 ) ) |
32 |
26 31
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( 𝑛 ‘ 0 ) ∈ ℕ ) |
33 |
20 32
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℝ ) |
34 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
35 |
|
fss |
⊢ ( ( 𝐻 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐻 : ℕ ⟶ ℝ ) |
36 |
4 34 35
|
sylancl |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ℝ ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝐻 : ℕ ⟶ ℝ ) |
38 |
37 32
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ∈ ℝ ) |
39 |
33 38
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) ∈ ℝ ) |
40 |
|
1ex |
⊢ 1 ∈ V |
41 |
40
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
42 |
41 29
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 3 ) |
43 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 1 ∈ ( 0 ..^ 3 ) ) |
44 |
26 43
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( 𝑛 ‘ 1 ) ∈ ℕ ) |
45 |
20 44
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℝ ) |
46 |
|
fss |
⊢ ( ( 𝐾 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐾 : ℕ ⟶ ℝ ) |
47 |
5 34 46
|
sylancl |
⊢ ( 𝜑 → 𝐾 : ℕ ⟶ ℝ ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝐾 : ℕ ⟶ ℝ ) |
49 |
48 44
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ∈ ℝ ) |
50 |
45 49
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℝ ) |
51 |
|
2ex |
⊢ 2 ∈ V |
52 |
51
|
tpid3 |
⊢ 2 ∈ { 0 , 1 , 2 } |
53 |
52 29
|
eleqtrri |
⊢ 2 ∈ ( 0 ..^ 3 ) |
54 |
53
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 2 ∈ ( 0 ..^ 3 ) ) |
55 |
26 54
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( 𝑛 ‘ 2 ) ∈ ℕ ) |
56 |
20 55
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ ) |
57 |
48 55
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ ) |
58 |
56 57
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ ) |
59 |
50 58
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ ) |
60 |
39 59
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℝ ) |
61 |
18 60
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℝ ) |
62 |
16 61
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℝ ) |
63 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
64 |
|
qssre |
⊢ ℚ ⊆ ℝ |
65 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
66 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
67 |
|
nn0ssq |
⊢ ℕ0 ⊆ ℚ |
68 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
69 |
67 68
|
sselii |
⊢ 8 ∈ ℚ |
70 |
65 69
|
dp2clq |
⊢ _ 4 8 ∈ ℚ |
71 |
66 70
|
dp2clq |
⊢ _ 2 _ 4 8 ∈ ℚ |
72 |
66 71
|
dp2clq |
⊢ _ 2 _ 2 _ 4 8 ∈ ℚ |
73 |
65 72
|
dp2clq |
⊢ _ 4 _ 2 _ 2 _ 4 8 ∈ ℚ |
74 |
63 73
|
dp2clq |
⊢ _ 0 _ 4 _ 2 _ 2 _ 4 8 ∈ ℚ |
75 |
63 74
|
dp2clq |
⊢ _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ∈ ℚ |
76 |
63 75
|
dp2clq |
⊢ _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ∈ ℚ |
77 |
64 76
|
sselii |
⊢ _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ∈ ℝ |
78 |
|
dpcl |
⊢ ( ( 0 ∈ ℕ0 ∧ _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ∈ ℝ ) → ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ∈ ℝ ) |
79 |
63 77 78
|
mp2an |
⊢ ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ∈ ℝ |
80 |
79
|
a1i |
⊢ ( 𝜑 → ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ∈ ℝ ) |
81 |
9
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
82 |
81
|
resqcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℝ ) |
83 |
80 82
|
remulcld |
⊢ ( 𝜑 → ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ∈ ℝ ) |
84 |
14 60
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℝ ) |
85 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
86 |
11 70
|
dp2clq |
⊢ _ 3 _ 4 8 ∈ ℚ |
87 |
64 86
|
sselii |
⊢ _ 3 _ 4 8 ∈ ℝ |
88 |
|
dpcl |
⊢ ( ( 7 ∈ ℕ0 ∧ _ 3 _ 4 8 ∈ ℝ ) → ( 7 . _ 3 _ 4 8 ) ∈ ℝ ) |
89 |
85 87 88
|
mp2an |
⊢ ( 7 . _ 3 _ 4 8 ) ∈ ℝ |
90 |
89
|
a1i |
⊢ ( 𝜑 → ( 7 . _ 3 _ 4 8 ) ∈ ℝ ) |
91 |
9
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
92 |
91
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ ) |
93 |
10
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
94 |
81 93
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ ) |
95 |
91
|
sqrtgt0d |
⊢ ( 𝜑 → 0 < ( √ ‘ 𝑁 ) ) |
96 |
95
|
gt0ne0d |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ≠ 0 ) |
97 |
92 94 96
|
redivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) / ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
98 |
90 97
|
remulcld |
⊢ ( 𝜑 → ( ( 7 . _ 3 _ 4 8 ) · ( ( log ‘ 𝑁 ) / ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
99 |
98 82
|
remulcld |
⊢ ( 𝜑 → ( ( ( 7 . _ 3 _ 4 8 ) · ( ( log ‘ 𝑁 ) / ( √ ‘ 𝑁 ) ) ) · ( 𝑁 ↑ 2 ) ) ∈ ℝ ) |
100 |
1 9 3 4 5 6 7
|
hgt750leme |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ ( ( ( 7 . _ 3 _ 4 8 ) · ( ( log ‘ 𝑁 ) / ( √ ‘ 𝑁 ) ) ) · ( 𝑁 ↑ 2 ) ) ) |
101 |
|
2z |
⊢ 2 ∈ ℤ |
102 |
101
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
103 |
91 102
|
rpexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℝ+ ) |
104 |
|
hgt750lem |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑁 ) → ( ( 7 . _ 3 _ 4 8 ) · ( ( log ‘ 𝑁 ) / ( √ ‘ 𝑁 ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) |
105 |
10 3 104
|
syl2anc |
⊢ ( 𝜑 → ( ( 7 . _ 3 _ 4 8 ) · ( ( log ‘ 𝑁 ) / ( √ ‘ 𝑁 ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) |
106 |
98 80 103 105
|
ltmul1dd |
⊢ ( 𝜑 → ( ( ( 7 . _ 3 _ 4 8 ) · ( ( log ‘ 𝑁 ) / ( √ ‘ 𝑁 ) ) ) · ( 𝑁 ↑ 2 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ) |
107 |
62 99 83 100 106
|
lelttrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ) |
108 |
36 47 10
|
circlemethhgt |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · 𝐻 ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝐾 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |
109 |
8 108
|
breqtrrd |
⊢ ( 𝜑 → ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
110 |
62 83 84 107 109
|
ltletrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) < Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
111 |
62 84
|
posdifd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) < Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ↔ 0 < ( Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) − Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) ) ) |
112 |
110 111
|
mpbid |
⊢ ( 𝜑 → 0 < ( Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) − Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) ) |
113 |
|
inss2 |
⊢ ( 𝑂 ∩ ℙ ) ⊆ ℙ |
114 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
115 |
113 114
|
sstri |
⊢ ( 𝑂 ∩ ℙ ) ⊆ ℕ |
116 |
115
|
a1i |
⊢ ( 𝜑 → ( 𝑂 ∩ ℙ ) ⊆ ℕ ) |
117 |
13 22 12 116
|
reprss |
⊢ ( 𝜑 → ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ⊆ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
118 |
14 117
|
ssfid |
⊢ ( 𝜑 → ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ∈ Fin ) |
119 |
117
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
120 |
60
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℂ ) |
121 |
119 120
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℂ ) |
122 |
118 121
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℂ ) |
123 |
62
|
recnd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℂ ) |
124 |
|
disjdif |
⊢ ( ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ∩ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ) = ∅ |
125 |
124
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ∩ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ) = ∅ ) |
126 |
|
undif |
⊢ ( ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ⊆ ( ℕ ( repr ‘ 3 ) 𝑁 ) ↔ ( ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ∪ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ) = ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
127 |
117 126
|
sylib |
⊢ ( 𝜑 → ( ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ∪ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ) = ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
128 |
127
|
eqcomd |
⊢ ( 𝜑 → ( ℕ ( repr ‘ 3 ) 𝑁 ) = ( ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ∪ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ) ) |
129 |
125 128 14 120
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ( Σ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) + Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) ) |
130 |
122 123 129
|
mvrraddd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) − Σ 𝑛 ∈ ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∖ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) = Σ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
131 |
112 130
|
breqtrd |
⊢ ( 𝜑 → 0 < Σ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |