| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgoldbachgtda.o | ⊢ 𝑂  =  { 𝑧  ∈  ℤ  ∣  ¬  2  ∥  𝑧 } | 
						
							| 2 |  | tgoldbachgtda.n | ⊢ ( 𝜑  →  𝑁  ∈  𝑂 ) | 
						
							| 3 |  | tgoldbachgtda.0 | ⊢ ( 𝜑  →  ( ; 1 0 ↑ ; 2 7 )  ≤  𝑁 ) | 
						
							| 4 | 2 1 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  { 𝑧  ∈  ℤ  ∣  ¬  2  ∥  𝑧 } ) | 
						
							| 5 |  | elrabi | ⊢ ( 𝑁  ∈  { 𝑧  ∈  ℤ  ∣  ¬  2  ∥  𝑧 }  →  𝑁  ∈  ℤ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 7 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 8 |  | 10nn0 | ⊢ ; 1 0  ∈  ℕ0 | 
						
							| 9 | 8 | nn0rei | ⊢ ; 1 0  ∈  ℝ | 
						
							| 10 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 11 |  | 7nn0 | ⊢ 7  ∈  ℕ0 | 
						
							| 12 | 10 11 | deccl | ⊢ ; 2 7  ∈  ℕ0 | 
						
							| 13 |  | reexpcl | ⊢ ( ( ; 1 0  ∈  ℝ  ∧  ; 2 7  ∈  ℕ0 )  →  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ ) | 
						
							| 14 | 9 12 13 | mp2an | ⊢ ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ ) | 
						
							| 16 | 6 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 17 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 18 |  | 1lt10 | ⊢ 1  <  ; 1 0 | 
						
							| 19 | 17 9 18 | ltleii | ⊢ 1  ≤  ; 1 0 | 
						
							| 20 |  | expge1 | ⊢ ( ( ; 1 0  ∈  ℝ  ∧  ; 2 7  ∈  ℕ0  ∧  1  ≤  ; 1 0 )  →  1  ≤  ( ; 1 0 ↑ ; 2 7 ) ) | 
						
							| 21 | 9 12 19 20 | mp3an | ⊢ 1  ≤  ( ; 1 0 ↑ ; 2 7 ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  1  ≤  ( ; 1 0 ↑ ; 2 7 ) ) | 
						
							| 23 | 7 15 16 22 3 | letrd | ⊢ ( 𝜑  →  1  ≤  𝑁 ) | 
						
							| 24 |  | elnnz1 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℤ  ∧  1  ≤  𝑁 ) ) | 
						
							| 25 | 6 23 24 | sylanbrc | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) |