Step |
Hyp |
Ref |
Expression |
1 |
|
tgoldbachgtda.o |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
2 |
|
tgoldbachgtda.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑂 ) |
3 |
|
tgoldbachgtda.0 |
⊢ ( 𝜑 → ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑁 ) |
4 |
|
tgoldbachgtda.h |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 0 [,) +∞ ) ) |
5 |
|
tgoldbachgtda.k |
⊢ ( 𝜑 → 𝐾 : ℕ ⟶ ( 0 [,) +∞ ) ) |
6 |
|
tgoldbachgtda.1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐾 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ) |
7 |
|
tgoldbachgtda.2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ) |
8 |
|
tgoldbachgtda.3 |
⊢ ( 𝜑 → ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · 𝐻 ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝐾 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |
9 |
1 2 3
|
tgoldbachgnn |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
10 |
9
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
11 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
12 |
11
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
13 |
|
inss2 |
⊢ ( 𝑂 ∩ ℙ ) ⊆ ℙ |
14 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
15 |
13 14
|
sstri |
⊢ ( 𝑂 ∩ ℙ ) ⊆ ℕ |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑂 ∩ ℙ ) ⊆ ℕ ) |
17 |
10 12 16
|
reprfi2 |
⊢ ( 𝜑 → ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ∈ Fin ) |
18 |
1 2 3 4 5 6 7 8
|
tgoldbachgtde |
⊢ ( 𝜑 → 0 < Σ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
19 |
18
|
gt0ne0d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≠ 0 ) |
20 |
19
|
neneqd |
⊢ ( 𝜑 → ¬ Σ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = 0 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) = ∅ ) → ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) = ∅ ) |
22 |
21
|
sumeq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) = ∅ ) → Σ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = Σ 𝑛 ∈ ∅ ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
23 |
|
sum0 |
⊢ Σ 𝑛 ∈ ∅ ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = 0 |
24 |
22 23
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) = ∅ ) → Σ 𝑛 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = 0 ) |
25 |
20 24
|
mtand |
⊢ ( 𝜑 → ¬ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) = ∅ ) |
26 |
25
|
neqned |
⊢ ( 𝜑 → ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ≠ ∅ ) |
27 |
|
hashnncl |
⊢ ( ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ∈ Fin → ( ( ♯ ‘ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ∈ ℕ ↔ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ≠ ∅ ) ) |
28 |
27
|
biimpar |
⊢ ( ( ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ∈ Fin ∧ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ≠ ∅ ) → ( ♯ ‘ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ∈ ℕ ) |
29 |
17 26 28
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ∈ ℕ ) |
30 |
|
nngt0 |
⊢ ( ( ♯ ‘ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ∈ ℕ → 0 < ( ♯ ‘ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → 0 < ( ♯ ‘ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑁 ) ) ) |