Description: Lemma for tgoldbachgtd . (Contributed by Thierry Arnoux, 15-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgoldbachgtda.o | |
|
tgoldbachgtda.n | |
||
tgoldbachgtda.0 | |
||
tgoldbachgtda.h | |
||
tgoldbachgtda.k | |
||
tgoldbachgtda.1 | |
||
tgoldbachgtda.2 | |
||
tgoldbachgtda.3 | |
||
Assertion | tgoldbachgtda | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgoldbachgtda.o | |
|
2 | tgoldbachgtda.n | |
|
3 | tgoldbachgtda.0 | |
|
4 | tgoldbachgtda.h | |
|
5 | tgoldbachgtda.k | |
|
6 | tgoldbachgtda.1 | |
|
7 | tgoldbachgtda.2 | |
|
8 | tgoldbachgtda.3 | |
|
9 | 1 2 3 | tgoldbachgnn | |
10 | 9 | nnnn0d | |
11 | 3nn0 | |
|
12 | 11 | a1i | |
13 | inss2 | |
|
14 | prmssnn | |
|
15 | 13 14 | sstri | |
16 | 15 | a1i | |
17 | 10 12 16 | reprfi2 | |
18 | 1 2 3 4 5 6 7 8 | tgoldbachgtde | |
19 | 18 | gt0ne0d | |
20 | 19 | neneqd | |
21 | simpr | |
|
22 | 21 | sumeq1d | |
23 | sum0 | |
|
24 | 22 23 | eqtrdi | |
25 | 20 24 | mtand | |
26 | 25 | neqned | |
27 | hashnncl | |
|
28 | 27 | biimpar | |
29 | 17 26 28 | syl2anc | |
30 | nngt0 | |
|
31 | 29 30 | syl | |