Metamath Proof Explorer


Theorem tgoldbachgtda

Description: Lemma for tgoldbachgtd . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses tgoldbachgtda.o O=z|¬2z
tgoldbachgtda.n φNO
tgoldbachgtda.0 φ1027N
tgoldbachgtda.h φH:0+∞
tgoldbachgtda.k φK:0+∞
tgoldbachgtda.1 φmKm1 .079955
tgoldbachgtda.2 φmHm1 .414
tgoldbachgtda.3 φ0 .00042248N201Λ×fHvtsNxΛ×fKvtsNx2ei2π- Nxdx
Assertion tgoldbachgtda φ0<Orepr3N

Proof

Step Hyp Ref Expression
1 tgoldbachgtda.o O=z|¬2z
2 tgoldbachgtda.n φNO
3 tgoldbachgtda.0 φ1027N
4 tgoldbachgtda.h φH:0+∞
5 tgoldbachgtda.k φK:0+∞
6 tgoldbachgtda.1 φmKm1 .079955
7 tgoldbachgtda.2 φmHm1 .414
8 tgoldbachgtda.3 φ0 .00042248N201Λ×fHvtsNxΛ×fKvtsNx2ei2π- Nxdx
9 1 2 3 tgoldbachgnn φN
10 9 nnnn0d φN0
11 3nn0 30
12 11 a1i φ30
13 inss2 O
14 prmssnn
15 13 14 sstri O
16 15 a1i φO
17 10 12 16 reprfi2 φOrepr3NFin
18 1 2 3 4 5 6 7 8 tgoldbachgtde φ0<nOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
19 18 gt0ne0d φnOrepr3NΛn0Hn0Λn1Kn1Λn2Kn20
20 19 neneqd φ¬nOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2=0
21 simpr φOrepr3N=Orepr3N=
22 21 sumeq1d φOrepr3N=nOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2=nΛn0Hn0Λn1Kn1Λn2Kn2
23 sum0 nΛn0Hn0Λn1Kn1Λn2Kn2=0
24 22 23 eqtrdi φOrepr3N=nOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2=0
25 20 24 mtand φ¬Orepr3N=
26 25 neqned φOrepr3N
27 hashnncl Orepr3NFinOrepr3NOrepr3N
28 27 biimpar Orepr3NFinOrepr3NOrepr3N
29 17 26 28 syl2anc φOrepr3N
30 nngt0 Orepr3N0<Orepr3N
31 29 30 syl φ0<Orepr3N