| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgt750leme.o |  |-  O = { z e. ZZ | -. 2 || z } | 
						
							| 2 |  | hgt750leme.n |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | hgt750leme.0 |  |-  ( ph -> ( ; 1 0 ^ ; 2 7 ) <_ N ) | 
						
							| 4 |  | hgt750leme.h |  |-  ( ph -> H : NN --> ( 0 [,) +oo ) ) | 
						
							| 5 |  | hgt750leme.k |  |-  ( ph -> K : NN --> ( 0 [,) +oo ) ) | 
						
							| 6 |  | hgt750leme.1 |  |-  ( ( ph /\ m e. NN ) -> ( K ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ) | 
						
							| 7 |  | hgt750leme.2 |  |-  ( ( ph /\ m e. NN ) -> ( H ` m ) <_ ( 1 . _ 4 _ 1 4 ) ) | 
						
							| 8 | 2 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 9 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 10 | 9 | a1i |  |-  ( ph -> 3 e. NN0 ) | 
						
							| 11 |  | ssidd |  |-  ( ph -> NN C_ NN ) | 
						
							| 12 | 8 10 11 | reprfi2 |  |-  ( ph -> ( NN ( repr ` 3 ) N ) e. Fin ) | 
						
							| 13 |  | diffi |  |-  ( ( NN ( repr ` 3 ) N ) e. Fin -> ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) e. Fin ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) e. Fin ) | 
						
							| 15 |  | vmaf |  |-  Lam : NN --> RR | 
						
							| 16 | 15 | a1i |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> Lam : NN --> RR ) | 
						
							| 17 |  | ssidd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> NN C_ NN ) | 
						
							| 18 | 2 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> N e. ZZ ) | 
						
							| 20 | 9 | a1i |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 3 e. NN0 ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) | 
						
							| 22 | 21 | eldifad |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n e. ( NN ( repr ` 3 ) N ) ) | 
						
							| 23 | 17 19 20 22 | reprf |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n : ( 0 ..^ 3 ) --> NN ) | 
						
							| 24 |  | c0ex |  |-  0 e. _V | 
						
							| 25 | 24 | tpid1 |  |-  0 e. { 0 , 1 , 2 } | 
						
							| 26 |  | fzo0to3tp |  |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 } | 
						
							| 27 | 25 26 | eleqtrri |  |-  0 e. ( 0 ..^ 3 ) | 
						
							| 28 | 27 | a1i |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 0 e. ( 0 ..^ 3 ) ) | 
						
							| 29 | 23 28 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( n ` 0 ) e. NN ) | 
						
							| 30 | 16 29 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( Lam ` ( n ` 0 ) ) e. RR ) | 
						
							| 31 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 32 | 4 | adantr |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> H : NN --> ( 0 [,) +oo ) ) | 
						
							| 33 | 32 29 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( H ` ( n ` 0 ) ) e. ( 0 [,) +oo ) ) | 
						
							| 34 | 31 33 | sselid |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( H ` ( n ` 0 ) ) e. RR ) | 
						
							| 35 | 30 34 | remulcld |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) e. RR ) | 
						
							| 36 |  | 1ex |  |-  1 e. _V | 
						
							| 37 | 36 | tpid2 |  |-  1 e. { 0 , 1 , 2 } | 
						
							| 38 | 37 26 | eleqtrri |  |-  1 e. ( 0 ..^ 3 ) | 
						
							| 39 | 38 | a1i |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 1 e. ( 0 ..^ 3 ) ) | 
						
							| 40 | 23 39 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( n ` 1 ) e. NN ) | 
						
							| 41 | 16 40 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( Lam ` ( n ` 1 ) ) e. RR ) | 
						
							| 42 | 5 | adantr |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> K : NN --> ( 0 [,) +oo ) ) | 
						
							| 43 | 42 40 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 1 ) ) e. ( 0 [,) +oo ) ) | 
						
							| 44 | 31 43 | sselid |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 1 ) ) e. RR ) | 
						
							| 45 | 41 44 | remulcld |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) e. RR ) | 
						
							| 46 |  | 2ex |  |-  2 e. _V | 
						
							| 47 | 46 | tpid3 |  |-  2 e. { 0 , 1 , 2 } | 
						
							| 48 | 47 26 | eleqtrri |  |-  2 e. ( 0 ..^ 3 ) | 
						
							| 49 | 48 | a1i |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 2 e. ( 0 ..^ 3 ) ) | 
						
							| 50 | 23 49 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( n ` 2 ) e. NN ) | 
						
							| 51 | 16 50 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( Lam ` ( n ` 2 ) ) e. RR ) | 
						
							| 52 | 42 50 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 2 ) ) e. ( 0 [,) +oo ) ) | 
						
							| 53 | 31 52 | sselid |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 2 ) ) e. RR ) | 
						
							| 54 | 51 53 | remulcld |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) e. RR ) | 
						
							| 55 | 45 54 | remulcld |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) e. RR ) | 
						
							| 56 | 35 55 | remulcld |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) | 
						
							| 57 | 14 56 | fsumrecl |  |-  ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) | 
						
							| 58 |  | 3re |  |-  3 e. RR | 
						
							| 59 | 58 | a1i |  |-  ( ph -> 3 e. RR ) | 
						
							| 60 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 61 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 62 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 63 |  | 9nn0 |  |-  9 e. NN0 | 
						
							| 64 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 65 |  | 5nn |  |-  5 e. NN | 
						
							| 66 |  | nnrp |  |-  ( 5 e. NN -> 5 e. RR+ ) | 
						
							| 67 | 65 66 | ax-mp |  |-  5 e. RR+ | 
						
							| 68 | 64 67 | rpdp2cl |  |-  _ 5 5 e. RR+ | 
						
							| 69 | 63 68 | rpdp2cl |  |-  _ 9 _ 5 5 e. RR+ | 
						
							| 70 | 63 69 | rpdp2cl |  |-  _ 9 _ 9 _ 5 5 e. RR+ | 
						
							| 71 | 62 70 | rpdp2cl |  |-  _ 7 _ 9 _ 9 _ 5 5 e. RR+ | 
						
							| 72 | 61 71 | rpdp2cl |  |-  _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR+ | 
						
							| 73 | 60 72 | rpdpcl |  |-  ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR+ | 
						
							| 74 | 73 | a1i |  |-  ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR+ ) | 
						
							| 75 | 74 | rpred |  |-  ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR ) | 
						
							| 76 | 75 | resqcld |  |-  ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR ) | 
						
							| 77 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 78 |  | 4nn |  |-  4 e. NN | 
						
							| 79 |  | nnrp |  |-  ( 4 e. NN -> 4 e. RR+ ) | 
						
							| 80 | 78 79 | ax-mp |  |-  4 e. RR+ | 
						
							| 81 | 60 80 | rpdp2cl |  |-  _ 1 4 e. RR+ | 
						
							| 82 | 77 81 | rpdp2cl |  |-  _ 4 _ 1 4 e. RR+ | 
						
							| 83 | 60 82 | rpdpcl |  |-  ( 1 . _ 4 _ 1 4 ) e. RR+ | 
						
							| 84 | 83 | a1i |  |-  ( ph -> ( 1 . _ 4 _ 1 4 ) e. RR+ ) | 
						
							| 85 | 84 | rpred |  |-  ( ph -> ( 1 . _ 4 _ 1 4 ) e. RR ) | 
						
							| 86 | 76 85 | remulcld |  |-  ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR ) | 
						
							| 87 |  | fveq1 |  |-  ( d = c -> ( d ` 0 ) = ( c ` 0 ) ) | 
						
							| 88 | 87 | eleq1d |  |-  ( d = c -> ( ( d ` 0 ) e. ( O i^i Prime ) <-> ( c ` 0 ) e. ( O i^i Prime ) ) ) | 
						
							| 89 | 88 | notbid |  |-  ( d = c -> ( -. ( d ` 0 ) e. ( O i^i Prime ) <-> -. ( c ` 0 ) e. ( O i^i Prime ) ) ) | 
						
							| 90 | 89 | cbvrabv |  |-  { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } = { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` 0 ) e. ( O i^i Prime ) } | 
						
							| 91 | 90 | ssrab3 |  |-  { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } C_ ( NN ( repr ` 3 ) N ) | 
						
							| 92 |  | ssfi |  |-  ( ( ( NN ( repr ` 3 ) N ) e. Fin /\ { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } C_ ( NN ( repr ` 3 ) N ) ) -> { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } e. Fin ) | 
						
							| 93 | 12 91 92 | sylancl |  |-  ( ph -> { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } e. Fin ) | 
						
							| 94 | 15 | a1i |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> Lam : NN --> RR ) | 
						
							| 95 |  | ssidd |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> NN C_ NN ) | 
						
							| 96 | 18 | adantr |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> N e. ZZ ) | 
						
							| 97 | 9 | a1i |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 3 e. NN0 ) | 
						
							| 98 | 91 | a1i |  |-  ( ph -> { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } C_ ( NN ( repr ` 3 ) N ) ) | 
						
							| 99 | 98 | sselda |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> n e. ( NN ( repr ` 3 ) N ) ) | 
						
							| 100 | 95 96 97 99 | reprf |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> n : ( 0 ..^ 3 ) --> NN ) | 
						
							| 101 | 27 | a1i |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 0 e. ( 0 ..^ 3 ) ) | 
						
							| 102 | 100 101 | ffvelcdmd |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( n ` 0 ) e. NN ) | 
						
							| 103 | 94 102 | ffvelcdmd |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( Lam ` ( n ` 0 ) ) e. RR ) | 
						
							| 104 | 38 | a1i |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 1 e. ( 0 ..^ 3 ) ) | 
						
							| 105 | 100 104 | ffvelcdmd |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( n ` 1 ) e. NN ) | 
						
							| 106 | 94 105 | ffvelcdmd |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( Lam ` ( n ` 1 ) ) e. RR ) | 
						
							| 107 | 48 | a1i |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 2 e. ( 0 ..^ 3 ) ) | 
						
							| 108 | 100 107 | ffvelcdmd |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( n ` 2 ) e. NN ) | 
						
							| 109 | 94 108 | ffvelcdmd |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( Lam ` ( n ` 2 ) ) e. RR ) | 
						
							| 110 | 106 109 | remulcld |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. RR ) | 
						
							| 111 | 103 110 | remulcld |  |-  ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) | 
						
							| 112 | 93 111 | fsumrecl |  |-  ( ph -> sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) | 
						
							| 113 | 86 112 | remulcld |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) | 
						
							| 114 | 59 113 | remulcld |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) e. RR ) | 
						
							| 115 |  | 4re |  |-  4 e. RR | 
						
							| 116 |  | 8re |  |-  8 e. RR | 
						
							| 117 | 115 116 | pm3.2i |  |-  ( 4 e. RR /\ 8 e. RR ) | 
						
							| 118 |  | dp2cl |  |-  ( ( 4 e. RR /\ 8 e. RR ) -> _ 4 8 e. RR ) | 
						
							| 119 | 117 118 | ax-mp |  |-  _ 4 8 e. RR | 
						
							| 120 | 58 119 | pm3.2i |  |-  ( 3 e. RR /\ _ 4 8 e. RR ) | 
						
							| 121 |  | dp2cl |  |-  ( ( 3 e. RR /\ _ 4 8 e. RR ) -> _ 3 _ 4 8 e. RR ) | 
						
							| 122 | 120 121 | ax-mp |  |-  _ 3 _ 4 8 e. RR | 
						
							| 123 |  | dpcl |  |-  ( ( 7 e. NN0 /\ _ 3 _ 4 8 e. RR ) -> ( 7 . _ 3 _ 4 8 ) e. RR ) | 
						
							| 124 | 62 122 123 | mp2an |  |-  ( 7 . _ 3 _ 4 8 ) e. RR | 
						
							| 125 | 124 | a1i |  |-  ( ph -> ( 7 . _ 3 _ 4 8 ) e. RR ) | 
						
							| 126 | 2 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 127 | 126 | relogcld |  |-  ( ph -> ( log ` N ) e. RR ) | 
						
							| 128 | 2 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 129 | 126 | rpge0d |  |-  ( ph -> 0 <_ N ) | 
						
							| 130 | 128 129 | resqrtcld |  |-  ( ph -> ( sqrt ` N ) e. RR ) | 
						
							| 131 | 126 | rpsqrtcld |  |-  ( ph -> ( sqrt ` N ) e. RR+ ) | 
						
							| 132 | 131 | rpne0d |  |-  ( ph -> ( sqrt ` N ) =/= 0 ) | 
						
							| 133 | 127 130 132 | redivcld |  |-  ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. RR ) | 
						
							| 134 | 125 133 | remulcld |  |-  ( ph -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) e. RR ) | 
						
							| 135 | 128 | resqcld |  |-  ( ph -> ( N ^ 2 ) e. RR ) | 
						
							| 136 | 134 135 | remulcld |  |-  ( ph -> ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) e. RR ) | 
						
							| 137 |  | 0re |  |-  0 e. RR | 
						
							| 138 |  | 7re |  |-  7 e. RR | 
						
							| 139 |  | 9re |  |-  9 e. RR | 
						
							| 140 |  | 5re |  |-  5 e. RR | 
						
							| 141 | 140 140 | pm3.2i |  |-  ( 5 e. RR /\ 5 e. RR ) | 
						
							| 142 |  | dp2cl |  |-  ( ( 5 e. RR /\ 5 e. RR ) -> _ 5 5 e. RR ) | 
						
							| 143 | 141 142 | ax-mp |  |-  _ 5 5 e. RR | 
						
							| 144 | 139 143 | pm3.2i |  |-  ( 9 e. RR /\ _ 5 5 e. RR ) | 
						
							| 145 |  | dp2cl |  |-  ( ( 9 e. RR /\ _ 5 5 e. RR ) -> _ 9 _ 5 5 e. RR ) | 
						
							| 146 | 144 145 | ax-mp |  |-  _ 9 _ 5 5 e. RR | 
						
							| 147 | 139 146 | pm3.2i |  |-  ( 9 e. RR /\ _ 9 _ 5 5 e. RR ) | 
						
							| 148 |  | dp2cl |  |-  ( ( 9 e. RR /\ _ 9 _ 5 5 e. RR ) -> _ 9 _ 9 _ 5 5 e. RR ) | 
						
							| 149 | 147 148 | ax-mp |  |-  _ 9 _ 9 _ 5 5 e. RR | 
						
							| 150 | 138 149 | pm3.2i |  |-  ( 7 e. RR /\ _ 9 _ 9 _ 5 5 e. RR ) | 
						
							| 151 |  | dp2cl |  |-  ( ( 7 e. RR /\ _ 9 _ 9 _ 5 5 e. RR ) -> _ 7 _ 9 _ 9 _ 5 5 e. RR ) | 
						
							| 152 | 150 151 | ax-mp |  |-  _ 7 _ 9 _ 9 _ 5 5 e. RR | 
						
							| 153 | 137 152 | pm3.2i |  |-  ( 0 e. RR /\ _ 7 _ 9 _ 9 _ 5 5 e. RR ) | 
						
							| 154 |  | dp2cl |  |-  ( ( 0 e. RR /\ _ 7 _ 9 _ 9 _ 5 5 e. RR ) -> _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR ) | 
						
							| 155 | 153 154 | ax-mp |  |-  _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR | 
						
							| 156 |  | dpcl |  |-  ( ( 1 e. NN0 /\ _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR ) -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR ) | 
						
							| 157 | 60 155 156 | mp2an |  |-  ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR | 
						
							| 158 | 157 | a1i |  |-  ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR ) | 
						
							| 159 | 158 | resqcld |  |-  ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR ) | 
						
							| 160 |  | 1re |  |-  1 e. RR | 
						
							| 161 | 160 115 | pm3.2i |  |-  ( 1 e. RR /\ 4 e. RR ) | 
						
							| 162 |  | dp2cl |  |-  ( ( 1 e. RR /\ 4 e. RR ) -> _ 1 4 e. RR ) | 
						
							| 163 | 161 162 | ax-mp |  |-  _ 1 4 e. RR | 
						
							| 164 | 115 163 | pm3.2i |  |-  ( 4 e. RR /\ _ 1 4 e. RR ) | 
						
							| 165 |  | dp2cl |  |-  ( ( 4 e. RR /\ _ 1 4 e. RR ) -> _ 4 _ 1 4 e. RR ) | 
						
							| 166 | 164 165 | ax-mp |  |-  _ 4 _ 1 4 e. RR | 
						
							| 167 |  | dpcl |  |-  ( ( 1 e. NN0 /\ _ 4 _ 1 4 e. RR ) -> ( 1 . _ 4 _ 1 4 ) e. RR ) | 
						
							| 168 | 60 166 167 | mp2an |  |-  ( 1 . _ 4 _ 1 4 ) e. RR | 
						
							| 169 | 168 | a1i |  |-  ( ph -> ( 1 . _ 4 _ 1 4 ) e. RR ) | 
						
							| 170 | 159 169 | remulcld |  |-  ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR ) | 
						
							| 171 | 41 51 | remulcld |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. RR ) | 
						
							| 172 | 30 171 | remulcld |  |-  ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) | 
						
							| 173 | 14 172 | fsumrecl |  |-  ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) | 
						
							| 174 | 170 173 | remulcld |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) | 
						
							| 175 | 59 112 | remulcld |  |-  ( ph -> ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) | 
						
							| 176 | 170 175 | remulcld |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) e. RR ) | 
						
							| 177 | 14 158 169 4 5 29 40 50 6 7 | hgt750lemf |  |-  ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) | 
						
							| 178 |  | 2re |  |-  2 e. RR | 
						
							| 179 | 178 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 180 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 181 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 182 | 181 62 | deccl |  |-  ; 2 7 e. NN0 | 
						
							| 183 | 180 182 | nn0expcli |  |-  ( ; 1 0 ^ ; 2 7 ) e. NN0 | 
						
							| 184 | 183 | nn0rei |  |-  ( ; 1 0 ^ ; 2 7 ) e. RR | 
						
							| 185 | 184 | a1i |  |-  ( ph -> ( ; 1 0 ^ ; 2 7 ) e. RR ) | 
						
							| 186 | 180 | numexp1 |  |-  ( ; 1 0 ^ 1 ) = ; 1 0 | 
						
							| 187 | 180 | nn0rei |  |-  ; 1 0 e. RR | 
						
							| 188 | 186 187 | eqeltri |  |-  ( ; 1 0 ^ 1 ) e. RR | 
						
							| 189 | 188 | a1i |  |-  ( ph -> ( ; 1 0 ^ 1 ) e. RR ) | 
						
							| 190 |  | 1nn |  |-  1 e. NN | 
						
							| 191 |  | 2lt9 |  |-  2 < 9 | 
						
							| 192 | 178 139 191 | ltleii |  |-  2 <_ 9 | 
						
							| 193 | 190 61 181 192 | declei |  |-  2 <_ ; 1 0 | 
						
							| 194 | 193 186 | breqtrri |  |-  2 <_ ( ; 1 0 ^ 1 ) | 
						
							| 195 | 194 | a1i |  |-  ( ph -> 2 <_ ( ; 1 0 ^ 1 ) ) | 
						
							| 196 |  | 1z |  |-  1 e. ZZ | 
						
							| 197 | 182 | nn0zi |  |-  ; 2 7 e. ZZ | 
						
							| 198 | 187 196 197 | 3pm3.2i |  |-  ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) | 
						
							| 199 |  | 1lt10 |  |-  1 < ; 1 0 | 
						
							| 200 | 198 199 | pm3.2i |  |-  ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) /\ 1 < ; 1 0 ) | 
						
							| 201 |  | 2nn |  |-  2 e. NN | 
						
							| 202 |  | 1lt9 |  |-  1 < 9 | 
						
							| 203 | 160 139 202 | ltleii |  |-  1 <_ 9 | 
						
							| 204 | 201 62 60 203 | declei |  |-  1 <_ ; 2 7 | 
						
							| 205 |  | leexp2 |  |-  ( ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) /\ 1 < ; 1 0 ) -> ( 1 <_ ; 2 7 <-> ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) ) ) | 
						
							| 206 | 205 | biimpa |  |-  ( ( ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) /\ 1 < ; 1 0 ) /\ 1 <_ ; 2 7 ) -> ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 207 | 200 204 206 | mp2an |  |-  ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) | 
						
							| 208 | 207 | a1i |  |-  ( ph -> ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 209 | 179 189 185 195 208 | letrd |  |-  ( ph -> 2 <_ ( ; 1 0 ^ ; 2 7 ) ) | 
						
							| 210 | 179 185 128 209 3 | letrd |  |-  ( ph -> 2 <_ N ) | 
						
							| 211 |  | eqid |  |-  ( e e. { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` a ) e. ( O i^i Prime ) } |-> ( e o. if ( a = 0 , ( _I |` ( 0 ..^ 3 ) ) , ( ( pmTrsp ` ( 0 ..^ 3 ) ) ` { a , 0 } ) ) ) ) = ( e e. { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` a ) e. ( O i^i Prime ) } |-> ( e o. if ( a = 0 , ( _I |` ( 0 ..^ 3 ) ) , ( ( pmTrsp ` ( 0 ..^ 3 ) ) ` { a , 0 } ) ) ) ) | 
						
							| 212 | 1 2 210 90 211 | hgt750lema |  |-  ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) | 
						
							| 213 |  | 2z |  |-  2 e. ZZ | 
						
							| 214 | 213 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 215 | 74 214 | rpexpcld |  |-  ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR+ ) | 
						
							| 216 | 215 84 | rpmulcld |  |-  ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR+ ) | 
						
							| 217 | 173 175 216 | lemul2d |  |-  ( ph -> ( sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <-> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) ) | 
						
							| 218 | 212 217 | mpbid |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) | 
						
							| 219 | 57 174 176 177 218 | letrd |  |-  ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) | 
						
							| 220 | 158 | recnd |  |-  ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. CC ) | 
						
							| 221 | 220 | sqcld |  |-  ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. CC ) | 
						
							| 222 | 169 | recnd |  |-  ( ph -> ( 1 . _ 4 _ 1 4 ) e. CC ) | 
						
							| 223 | 221 222 | mulcld |  |-  ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. CC ) | 
						
							| 224 |  | 3cn |  |-  3 e. CC | 
						
							| 225 | 224 | a1i |  |-  ( ph -> 3 e. CC ) | 
						
							| 226 | 112 | recnd |  |-  ( ph -> sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. CC ) | 
						
							| 227 | 223 225 226 | mul12d |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) = ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) | 
						
							| 228 | 219 227 | breqtrd |  |-  ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) | 
						
							| 229 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 230 |  | diffi |  |-  ( ( 1 ... N ) e. Fin -> ( ( 1 ... N ) \ Prime ) e. Fin ) | 
						
							| 231 | 229 230 | ax-mp |  |-  ( ( 1 ... N ) \ Prime ) e. Fin | 
						
							| 232 |  | snfi |  |-  { 2 } e. Fin | 
						
							| 233 |  | unfi |  |-  ( ( ( ( 1 ... N ) \ Prime ) e. Fin /\ { 2 } e. Fin ) -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) | 
						
							| 234 | 231 232 233 | mp2an |  |-  ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin | 
						
							| 235 | 234 | a1i |  |-  ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) | 
						
							| 236 | 15 | a1i |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> Lam : NN --> RR ) | 
						
							| 237 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 238 | 237 | a1i |  |-  ( ph -> ( 1 ... N ) C_ NN ) | 
						
							| 239 | 238 | ssdifssd |  |-  ( ph -> ( ( 1 ... N ) \ Prime ) C_ NN ) | 
						
							| 240 | 201 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 241 | 240 | snssd |  |-  ( ph -> { 2 } C_ NN ) | 
						
							| 242 | 239 241 | unssd |  |-  ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) C_ NN ) | 
						
							| 243 | 242 | sselda |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> i e. NN ) | 
						
							| 244 | 236 243 | ffvelcdmd |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( Lam ` i ) e. RR ) | 
						
							| 245 | 235 244 | fsumrecl |  |-  ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) e. RR ) | 
						
							| 246 |  | chpvalz |  |-  ( N e. ZZ -> ( psi ` N ) = sum_ j e. ( 1 ... N ) ( Lam ` j ) ) | 
						
							| 247 | 18 246 | syl |  |-  ( ph -> ( psi ` N ) = sum_ j e. ( 1 ... N ) ( Lam ` j ) ) | 
						
							| 248 |  | chpf |  |-  psi : RR --> RR | 
						
							| 249 | 248 | a1i |  |-  ( ph -> psi : RR --> RR ) | 
						
							| 250 | 249 128 | ffvelcdmd |  |-  ( ph -> ( psi ` N ) e. RR ) | 
						
							| 251 | 247 250 | eqeltrrd |  |-  ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) e. RR ) | 
						
							| 252 | 245 251 | remulcld |  |-  ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) e. RR ) | 
						
							| 253 | 127 252 | remulcld |  |-  ( ph -> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) e. RR ) | 
						
							| 254 | 86 253 | remulcld |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) e. RR ) | 
						
							| 255 | 59 254 | remulcld |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) e. RR ) | 
						
							| 256 | 1 2 210 90 | hgt750lemb |  |-  ( ph -> sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) | 
						
							| 257 | 112 253 216 | lemul2d |  |-  ( ph -> ( sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <-> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) ) | 
						
							| 258 | 256 257 | mpbid |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) | 
						
							| 259 |  | 3rp |  |-  3 e. RR+ | 
						
							| 260 | 259 | a1i |  |-  ( ph -> 3 e. RR+ ) | 
						
							| 261 | 113 254 260 | lemul2d |  |-  ( ph -> ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <-> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) ) ) | 
						
							| 262 | 258 261 | mpbid |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) ) | 
						
							| 263 |  | 6re |  |-  6 e. RR | 
						
							| 264 | 263 58 | pm3.2i |  |-  ( 6 e. RR /\ 3 e. RR ) | 
						
							| 265 |  | dp2cl |  |-  ( ( 6 e. RR /\ 3 e. RR ) -> _ 6 3 e. RR ) | 
						
							| 266 | 264 265 | ax-mp |  |-  _ 6 3 e. RR | 
						
							| 267 | 178 266 | pm3.2i |  |-  ( 2 e. RR /\ _ 6 3 e. RR ) | 
						
							| 268 |  | dp2cl |  |-  ( ( 2 e. RR /\ _ 6 3 e. RR ) -> _ 2 _ 6 3 e. RR ) | 
						
							| 269 | 267 268 | ax-mp |  |-  _ 2 _ 6 3 e. RR | 
						
							| 270 | 115 269 | pm3.2i |  |-  ( 4 e. RR /\ _ 2 _ 6 3 e. RR ) | 
						
							| 271 |  | dp2cl |  |-  ( ( 4 e. RR /\ _ 2 _ 6 3 e. RR ) -> _ 4 _ 2 _ 6 3 e. RR ) | 
						
							| 272 | 270 271 | ax-mp |  |-  _ 4 _ 2 _ 6 3 e. RR | 
						
							| 273 |  | dpcl |  |-  ( ( 1 e. NN0 /\ _ 4 _ 2 _ 6 3 e. RR ) -> ( 1 . _ 4 _ 2 _ 6 3 ) e. RR ) | 
						
							| 274 | 60 272 273 | mp2an |  |-  ( 1 . _ 4 _ 2 _ 6 3 ) e. RR | 
						
							| 275 | 274 | a1i |  |-  ( ph -> ( 1 . _ 4 _ 2 _ 6 3 ) e. RR ) | 
						
							| 276 | 275 130 | remulcld |  |-  ( ph -> ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) e. RR ) | 
						
							| 277 | 116 58 | pm3.2i |  |-  ( 8 e. RR /\ 3 e. RR ) | 
						
							| 278 |  | dp2cl |  |-  ( ( 8 e. RR /\ 3 e. RR ) -> _ 8 3 e. RR ) | 
						
							| 279 | 277 278 | ax-mp |  |-  _ 8 3 e. RR | 
						
							| 280 | 116 279 | pm3.2i |  |-  ( 8 e. RR /\ _ 8 3 e. RR ) | 
						
							| 281 |  | dp2cl |  |-  ( ( 8 e. RR /\ _ 8 3 e. RR ) -> _ 8 _ 8 3 e. RR ) | 
						
							| 282 | 280 281 | ax-mp |  |-  _ 8 _ 8 3 e. RR | 
						
							| 283 | 58 282 | pm3.2i |  |-  ( 3 e. RR /\ _ 8 _ 8 3 e. RR ) | 
						
							| 284 |  | dp2cl |  |-  ( ( 3 e. RR /\ _ 8 _ 8 3 e. RR ) -> _ 3 _ 8 _ 8 3 e. RR ) | 
						
							| 285 | 283 284 | ax-mp |  |-  _ 3 _ 8 _ 8 3 e. RR | 
						
							| 286 | 137 285 | pm3.2i |  |-  ( 0 e. RR /\ _ 3 _ 8 _ 8 3 e. RR ) | 
						
							| 287 |  | dp2cl |  |-  ( ( 0 e. RR /\ _ 3 _ 8 _ 8 3 e. RR ) -> _ 0 _ 3 _ 8 _ 8 3 e. RR ) | 
						
							| 288 | 286 287 | ax-mp |  |-  _ 0 _ 3 _ 8 _ 8 3 e. RR | 
						
							| 289 |  | dpcl |  |-  ( ( 1 e. NN0 /\ _ 0 _ 3 _ 8 _ 8 3 e. RR ) -> ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. RR ) | 
						
							| 290 | 60 288 289 | mp2an |  |-  ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. RR | 
						
							| 291 | 290 | a1i |  |-  ( ph -> ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. RR ) | 
						
							| 292 | 291 128 | remulcld |  |-  ( ph -> ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) e. RR ) | 
						
							| 293 | 276 292 | remulcld |  |-  ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) e. RR ) | 
						
							| 294 | 127 293 | remulcld |  |-  ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) e. RR ) | 
						
							| 295 | 86 294 | remulcld |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) e. RR ) | 
						
							| 296 | 59 295 | remulcld |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) e. RR ) | 
						
							| 297 |  | vmage0 |  |-  ( i e. NN -> 0 <_ ( Lam ` i ) ) | 
						
							| 298 | 243 297 | syl |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> 0 <_ ( Lam ` i ) ) | 
						
							| 299 | 235 244 298 | fsumge0 |  |-  ( ph -> 0 <_ sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) ) | 
						
							| 300 | 2 3 | hgt750lemd |  |-  ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) < ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) ) | 
						
							| 301 |  | fzfid |  |-  ( ph -> ( 1 ... N ) e. Fin ) | 
						
							| 302 | 15 | a1i |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> Lam : NN --> RR ) | 
						
							| 303 | 238 | sselda |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> j e. NN ) | 
						
							| 304 | 302 303 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( Lam ` j ) e. RR ) | 
						
							| 305 |  | vmage0 |  |-  ( j e. NN -> 0 <_ ( Lam ` j ) ) | 
						
							| 306 | 303 305 | syl |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> 0 <_ ( Lam ` j ) ) | 
						
							| 307 | 301 304 306 | fsumge0 |  |-  ( ph -> 0 <_ sum_ j e. ( 1 ... N ) ( Lam ` j ) ) | 
						
							| 308 | 2 | hgt750lemc |  |-  ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) | 
						
							| 309 | 245 276 251 292 299 300 307 308 | ltmul12ad |  |-  ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) < ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) | 
						
							| 310 | 252 293 309 | ltled |  |-  ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) <_ ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) | 
						
							| 311 | 160 | a1i |  |-  ( ph -> 1 e. RR ) | 
						
							| 312 |  | 1lt2 |  |-  1 < 2 | 
						
							| 313 | 312 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 314 | 311 179 128 313 210 | ltletrd |  |-  ( ph -> 1 < N ) | 
						
							| 315 | 128 314 | rplogcld |  |-  ( ph -> ( log ` N ) e. RR+ ) | 
						
							| 316 | 252 293 315 | lemul2d |  |-  ( ph -> ( ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) <_ ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) <-> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <_ ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) | 
						
							| 317 | 310 316 | mpbid |  |-  ( ph -> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <_ ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) | 
						
							| 318 | 253 294 216 | lemul2d |  |-  ( ph -> ( ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <_ ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) <-> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) ) | 
						
							| 319 | 317 318 | mpbid |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) | 
						
							| 320 | 254 295 260 | lemul2d |  |-  ( ph -> ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) <-> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) ) ) | 
						
							| 321 | 319 320 | mpbid |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) ) | 
						
							| 322 | 157 | resqcli |  |-  ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR | 
						
							| 323 | 322 168 | remulcli |  |-  ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR | 
						
							| 324 | 274 290 | remulcli |  |-  ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) e. RR | 
						
							| 325 | 323 324 | remulcli |  |-  ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) e. RR | 
						
							| 326 | 58 325 | remulcli |  |-  ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) e. RR | 
						
							| 327 |  | hgt750lem2 |  |-  ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) < ( 7 . _ 3 _ 4 8 ) | 
						
							| 328 | 326 124 327 | ltleii |  |-  ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) <_ ( 7 . _ 3 _ 4 8 ) | 
						
							| 329 | 326 | a1i |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) e. RR ) | 
						
							| 330 | 315 131 | rpdivcld |  |-  ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. RR+ ) | 
						
							| 331 | 126 214 | rpexpcld |  |-  ( ph -> ( N ^ 2 ) e. RR+ ) | 
						
							| 332 | 330 331 | rpmulcld |  |-  ( ph -> ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) e. RR+ ) | 
						
							| 333 | 329 125 332 | lemul1d |  |-  ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) <_ ( 7 . _ 3 _ 4 8 ) <-> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) <_ ( ( 7 . _ 3 _ 4 8 ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) ) | 
						
							| 334 | 328 333 | mpbii |  |-  ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) <_ ( ( 7 . _ 3 _ 4 8 ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) | 
						
							| 335 | 275 | recnd |  |-  ( ph -> ( 1 . _ 4 _ 2 _ 6 3 ) e. CC ) | 
						
							| 336 | 130 | recnd |  |-  ( ph -> ( sqrt ` N ) e. CC ) | 
						
							| 337 | 291 | recnd |  |-  ( ph -> ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. CC ) | 
						
							| 338 | 128 | recnd |  |-  ( ph -> N e. CC ) | 
						
							| 339 | 335 336 337 338 | mul4d |  |-  ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) ) | 
						
							| 340 | 339 | oveq2d |  |-  ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) = ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) ) ) | 
						
							| 341 | 127 | recnd |  |-  ( ph -> ( log ` N ) e. CC ) | 
						
							| 342 | 335 337 | mulcld |  |-  ( ph -> ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) e. CC ) | 
						
							| 343 | 336 338 | mulcld |  |-  ( ph -> ( ( sqrt ` N ) x. N ) e. CC ) | 
						
							| 344 | 342 343 | mulcld |  |-  ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) e. CC ) | 
						
							| 345 | 341 344 | mulcomd |  |-  ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) ) = ( ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) x. ( log ` N ) ) ) | 
						
							| 346 | 340 345 | eqtrd |  |-  ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) = ( ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) x. ( log ` N ) ) ) | 
						
							| 347 | 342 343 341 | mulassd |  |-  ( ph -> ( ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) x. ( log ` N ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) | 
						
							| 348 | 346 347 | eqtrd |  |-  ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) | 
						
							| 349 | 348 | oveq2d |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) = ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) | 
						
							| 350 | 86 | recnd |  |-  ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. CC ) | 
						
							| 351 | 343 341 | mulcld |  |-  ( ph -> ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) e. CC ) | 
						
							| 352 | 350 342 351 | mulassd |  |-  ( ph -> ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) = ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) | 
						
							| 353 | 349 352 | eqtr4d |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) = ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) | 
						
							| 354 | 353 | oveq2d |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) = ( 3 x. ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) | 
						
							| 355 | 59 | recnd |  |-  ( ph -> 3 e. CC ) | 
						
							| 356 | 350 342 | mulcld |  |-  ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) e. CC ) | 
						
							| 357 | 355 356 351 | mulassd |  |-  ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) = ( 3 x. ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) | 
						
							| 358 | 354 357 | eqtr4d |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) = ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) | 
						
							| 359 | 135 | recnd |  |-  ( ph -> ( N ^ 2 ) e. CC ) | 
						
							| 360 | 341 336 359 132 | div32d |  |-  ( ph -> ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) = ( ( log ` N ) x. ( ( N ^ 2 ) / ( sqrt ` N ) ) ) ) | 
						
							| 361 | 359 336 132 | divcld |  |-  ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) e. CC ) | 
						
							| 362 | 341 361 | mulcomd |  |-  ( ph -> ( ( log ` N ) x. ( ( N ^ 2 ) / ( sqrt ` N ) ) ) = ( ( ( N ^ 2 ) / ( sqrt ` N ) ) x. ( log ` N ) ) ) | 
						
							| 363 | 338 | sqvald |  |-  ( ph -> ( N ^ 2 ) = ( N x. N ) ) | 
						
							| 364 | 363 | oveq1d |  |-  ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) = ( ( N x. N ) / ( sqrt ` N ) ) ) | 
						
							| 365 | 338 338 336 132 | divassd |  |-  ( ph -> ( ( N x. N ) / ( sqrt ` N ) ) = ( N x. ( N / ( sqrt ` N ) ) ) ) | 
						
							| 366 |  | divsqrtid |  |-  ( N e. RR+ -> ( N / ( sqrt ` N ) ) = ( sqrt ` N ) ) | 
						
							| 367 | 126 366 | syl |  |-  ( ph -> ( N / ( sqrt ` N ) ) = ( sqrt ` N ) ) | 
						
							| 368 | 367 | oveq2d |  |-  ( ph -> ( N x. ( N / ( sqrt ` N ) ) ) = ( N x. ( sqrt ` N ) ) ) | 
						
							| 369 | 364 365 368 | 3eqtrd |  |-  ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) = ( N x. ( sqrt ` N ) ) ) | 
						
							| 370 | 338 336 | mulcomd |  |-  ( ph -> ( N x. ( sqrt ` N ) ) = ( ( sqrt ` N ) x. N ) ) | 
						
							| 371 | 369 370 | eqtrd |  |-  ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) = ( ( sqrt ` N ) x. N ) ) | 
						
							| 372 | 371 | oveq1d |  |-  ( ph -> ( ( ( N ^ 2 ) / ( sqrt ` N ) ) x. ( log ` N ) ) = ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) | 
						
							| 373 | 360 362 372 | 3eqtrrd |  |-  ( ph -> ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) = ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) | 
						
							| 374 | 373 | oveq2d |  |-  ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) = ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) | 
						
							| 375 | 358 374 | eqtrd |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) = ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) | 
						
							| 376 | 125 | recnd |  |-  ( ph -> ( 7 . _ 3 _ 4 8 ) e. CC ) | 
						
							| 377 | 133 | recnd |  |-  ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. CC ) | 
						
							| 378 | 376 377 359 | mulassd |  |-  ( ph -> ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) = ( ( 7 . _ 3 _ 4 8 ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) | 
						
							| 379 | 334 375 378 | 3brtr4d |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) | 
						
							| 380 | 255 296 136 321 379 | letrd |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) | 
						
							| 381 | 114 255 136 262 380 | letrd |  |-  ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) | 
						
							| 382 | 57 114 136 228 381 | letrd |  |-  ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |