Metamath Proof Explorer


Theorem hgt750leme

Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of Helfgott p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021)

Ref Expression
Hypotheses hgt750leme.o O=z|¬2z
hgt750leme.n φN
hgt750leme.0 φ1027N
hgt750leme.h φH:0+∞
hgt750leme.k φK:0+∞
hgt750leme.1 φmKm1 .079955
hgt750leme.2 φmHm1 .414
Assertion hgt750leme φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn27 .348logNNN2

Proof

Step Hyp Ref Expression
1 hgt750leme.o O=z|¬2z
2 hgt750leme.n φN
3 hgt750leme.0 φ1027N
4 hgt750leme.h φH:0+∞
5 hgt750leme.k φK:0+∞
6 hgt750leme.1 φmKm1 .079955
7 hgt750leme.2 φmHm1 .414
8 2 nnnn0d φN0
9 3nn0 30
10 9 a1i φ30
11 ssidd φ
12 8 10 11 reprfi2 φrepr3NFin
13 diffi repr3NFinrepr3NOrepr3NFin
14 12 13 syl φrepr3NOrepr3NFin
15 vmaf Λ:
16 15 a1i φnrepr3NOrepr3NΛ:
17 ssidd φnrepr3NOrepr3N
18 2 nnzd φN
19 18 adantr φnrepr3NOrepr3NN
20 9 a1i φnrepr3NOrepr3N30
21 simpr φnrepr3NOrepr3Nnrepr3NOrepr3N
22 21 eldifad φnrepr3NOrepr3Nnrepr3N
23 17 19 20 22 reprf φnrepr3NOrepr3Nn:0..^3
24 c0ex 0V
25 24 tpid1 0012
26 fzo0to3tp 0..^3=012
27 25 26 eleqtrri 00..^3
28 27 a1i φnrepr3NOrepr3N00..^3
29 23 28 ffvelcdmd φnrepr3NOrepr3Nn0
30 16 29 ffvelcdmd φnrepr3NOrepr3NΛn0
31 rge0ssre 0+∞
32 4 adantr φnrepr3NOrepr3NH:0+∞
33 32 29 ffvelcdmd φnrepr3NOrepr3NHn00+∞
34 31 33 sselid φnrepr3NOrepr3NHn0
35 30 34 remulcld φnrepr3NOrepr3NΛn0Hn0
36 1ex 1V
37 36 tpid2 1012
38 37 26 eleqtrri 10..^3
39 38 a1i φnrepr3NOrepr3N10..^3
40 23 39 ffvelcdmd φnrepr3NOrepr3Nn1
41 16 40 ffvelcdmd φnrepr3NOrepr3NΛn1
42 5 adantr φnrepr3NOrepr3NK:0+∞
43 42 40 ffvelcdmd φnrepr3NOrepr3NKn10+∞
44 31 43 sselid φnrepr3NOrepr3NKn1
45 41 44 remulcld φnrepr3NOrepr3NΛn1Kn1
46 2ex 2V
47 46 tpid3 2012
48 47 26 eleqtrri 20..^3
49 48 a1i φnrepr3NOrepr3N20..^3
50 23 49 ffvelcdmd φnrepr3NOrepr3Nn2
51 16 50 ffvelcdmd φnrepr3NOrepr3NΛn2
52 42 50 ffvelcdmd φnrepr3NOrepr3NKn20+∞
53 31 52 sselid φnrepr3NOrepr3NKn2
54 51 53 remulcld φnrepr3NOrepr3NΛn2Kn2
55 45 54 remulcld φnrepr3NOrepr3NΛn1Kn1Λn2Kn2
56 35 55 remulcld φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
57 14 56 fsumrecl φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
58 3re 3
59 58 a1i φ3
60 1nn0 10
61 0nn0 00
62 7nn0 70
63 9nn0 90
64 5nn0 50
65 5nn 5
66 nnrp 55+
67 65 66 ax-mp 5+
68 64 67 rpdp2cl 55+
69 63 68 rpdp2cl 955+
70 63 69 rpdp2cl 9955+
71 62 70 rpdp2cl 79955+
72 61 71 rpdp2cl 079955+
73 60 72 rpdpcl 1 .079955+
74 73 a1i φ1 .079955+
75 74 rpred φ1 .079955
76 75 resqcld φ1 .0799552
77 4nn0 40
78 4nn 4
79 nnrp 44+
80 78 79 ax-mp 4+
81 60 80 rpdp2cl 14+
82 77 81 rpdp2cl 414+
83 60 82 rpdpcl 1 .414+
84 83 a1i φ1 .414+
85 84 rpred φ1 .414
86 76 85 remulcld φ1 .0799552 1 .414
87 fveq1 d=cd0=c0
88 87 eleq1d d=cd0Oc0O
89 88 notbid d=c¬d0O¬c0O
90 89 cbvrabv drepr3N|¬d0O=crepr3N|¬c0O
91 90 ssrab3 drepr3N|¬d0Orepr3N
92 ssfi repr3NFindrepr3N|¬d0Orepr3Ndrepr3N|¬d0OFin
93 12 91 92 sylancl φdrepr3N|¬d0OFin
94 15 a1i φndrepr3N|¬d0OΛ:
95 ssidd φndrepr3N|¬d0O
96 18 adantr φndrepr3N|¬d0ON
97 9 a1i φndrepr3N|¬d0O30
98 91 a1i φdrepr3N|¬d0Orepr3N
99 98 sselda φndrepr3N|¬d0Onrepr3N
100 95 96 97 99 reprf φndrepr3N|¬d0On:0..^3
101 27 a1i φndrepr3N|¬d0O00..^3
102 100 101 ffvelcdmd φndrepr3N|¬d0On0
103 94 102 ffvelcdmd φndrepr3N|¬d0OΛn0
104 38 a1i φndrepr3N|¬d0O10..^3
105 100 104 ffvelcdmd φndrepr3N|¬d0On1
106 94 105 ffvelcdmd φndrepr3N|¬d0OΛn1
107 48 a1i φndrepr3N|¬d0O20..^3
108 100 107 ffvelcdmd φndrepr3N|¬d0On2
109 94 108 ffvelcdmd φndrepr3N|¬d0OΛn2
110 106 109 remulcld φndrepr3N|¬d0OΛn1Λn2
111 103 110 remulcld φndrepr3N|¬d0OΛn0Λn1Λn2
112 93 111 fsumrecl φndrepr3N|¬d0OΛn0Λn1Λn2
113 86 112 remulcld φ1 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn2
114 59 113 remulcld φ31 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn2
115 4re 4
116 8re 8
117 115 116 pm3.2i 48
118 dp2cl 4848
119 117 118 ax-mp 48
120 58 119 pm3.2i 348
121 dp2cl 348348
122 120 121 ax-mp 348
123 dpcl 703487 .348
124 62 122 123 mp2an 7 .348
125 124 a1i φ7 .348
126 2 nnrpd φN+
127 126 relogcld φlogN
128 2 nnred φN
129 126 rpge0d φ0N
130 128 129 resqrtcld φN
131 126 rpsqrtcld φN+
132 131 rpne0d φN0
133 127 130 132 redivcld φlogNN
134 125 133 remulcld φ7 .348logNN
135 128 resqcld φN2
136 134 135 remulcld φ7 .348logNNN2
137 0re 0
138 7re 7
139 9re 9
140 5re 5
141 140 140 pm3.2i 55
142 dp2cl 5555
143 141 142 ax-mp 55
144 139 143 pm3.2i 955
145 dp2cl 955955
146 144 145 ax-mp 955
147 139 146 pm3.2i 9955
148 dp2cl 99559955
149 147 148 ax-mp 9955
150 138 149 pm3.2i 79955
151 dp2cl 7995579955
152 150 151 ax-mp 79955
153 137 152 pm3.2i 079955
154 dp2cl 079955079955
155 153 154 ax-mp 079955
156 dpcl 100799551 .079955
157 60 155 156 mp2an 1 .079955
158 157 a1i φ1 .079955
159 158 resqcld φ1 .0799552
160 1re 1
161 160 115 pm3.2i 14
162 dp2cl 1414
163 161 162 ax-mp 14
164 115 163 pm3.2i 414
165 dp2cl 414414
166 164 165 ax-mp 414
167 dpcl 104141 .414
168 60 166 167 mp2an 1 .414
169 168 a1i φ1 .414
170 159 169 remulcld φ1 .0799552 1 .414
171 41 51 remulcld φnrepr3NOrepr3NΛn1Λn2
172 30 171 remulcld φnrepr3NOrepr3NΛn0Λn1Λn2
173 14 172 fsumrecl φnrepr3NOrepr3NΛn0Λn1Λn2
174 170 173 remulcld φ1 .0799552 1 .414nrepr3NOrepr3NΛn0Λn1Λn2
175 59 112 remulcld φ3ndrepr3N|¬d0OΛn0Λn1Λn2
176 170 175 remulcld φ1 .0799552 1 .4143ndrepr3N|¬d0OΛn0Λn1Λn2
177 14 158 169 4 5 29 40 50 6 7 hgt750lemf φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn21 .0799552 1 .414nrepr3NOrepr3NΛn0Λn1Λn2
178 2re 2
179 178 a1i φ2
180 10nn0 100
181 2nn0 20
182 181 62 deccl 270
183 180 182 nn0expcli 10270
184 183 nn0rei 1027
185 184 a1i φ1027
186 180 numexp1 101=10
187 180 nn0rei 10
188 186 187 eqeltri 101
189 188 a1i φ101
190 1nn 1
191 2lt9 2<9
192 178 139 191 ltleii 29
193 190 61 181 192 declei 210
194 193 186 breqtrri 2101
195 194 a1i φ2101
196 1z 1
197 182 nn0zi 27
198 187 196 197 3pm3.2i 10127
199 1lt10 1<10
200 198 199 pm3.2i 101271<10
201 2nn 2
202 1lt9 1<9
203 160 139 202 ltleii 19
204 201 62 60 203 declei 127
205 leexp2 101271<101271011027
206 205 biimpa 101271<101271011027
207 200 204 206 mp2an 1011027
208 207 a1i φ1011027
209 179 189 185 195 208 letrd φ21027
210 179 185 128 209 3 letrd φ2N
211 eqid ecrepr3N|¬caOeifa=0I0..^3pmTrsp0..^3a0=ecrepr3N|¬caOeifa=0I0..^3pmTrsp0..^3a0
212 1 2 210 90 211 hgt750lema φnrepr3NOrepr3NΛn0Λn1Λn23ndrepr3N|¬d0OΛn0Λn1Λn2
213 2z 2
214 213 a1i φ2
215 74 214 rpexpcld φ1 .0799552+
216 215 84 rpmulcld φ1 .0799552 1 .414+
217 173 175 216 lemul2d φnrepr3NOrepr3NΛn0Λn1Λn23ndrepr3N|¬d0OΛn0Λn1Λn21 .0799552 1 .414nrepr3NOrepr3NΛn0Λn1Λn21 .0799552 1 .4143ndrepr3N|¬d0OΛn0Λn1Λn2
218 212 217 mpbid φ1 .0799552 1 .414nrepr3NOrepr3NΛn0Λn1Λn21 .0799552 1 .4143ndrepr3N|¬d0OΛn0Λn1Λn2
219 57 174 176 177 218 letrd φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn21 .0799552 1 .4143ndrepr3N|¬d0OΛn0Λn1Λn2
220 158 recnd φ1 .079955
221 220 sqcld φ1 .0799552
222 169 recnd φ1 .414
223 221 222 mulcld φ1 .0799552 1 .414
224 3cn 3
225 224 a1i φ3
226 112 recnd φndrepr3N|¬d0OΛn0Λn1Λn2
227 223 225 226 mul12d φ1 .0799552 1 .4143ndrepr3N|¬d0OΛn0Λn1Λn2=31 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn2
228 219 227 breqtrd φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn231 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn2
229 fzfi 1NFin
230 diffi 1NFin1NFin
231 229 230 ax-mp 1NFin
232 snfi 2Fin
233 unfi 1NFin2Fin1N2Fin
234 231 232 233 mp2an 1N2Fin
235 234 a1i φ1N2Fin
236 15 a1i φi1N2Λ:
237 fz1ssnn 1N
238 237 a1i φ1N
239 238 ssdifssd φ1N
240 201 a1i φ2
241 240 snssd φ2
242 239 241 unssd φ1N2
243 242 sselda φi1N2i
244 236 243 ffvelcdmd φi1N2Λi
245 235 244 fsumrecl φi1N2Λi
246 chpvalz NψN=j=1NΛj
247 18 246 syl φψN=j=1NΛj
248 chpf ψ:
249 248 a1i φψ:
250 249 128 ffvelcdmd φψN
251 247 250 eqeltrrd φj=1NΛj
252 245 251 remulcld φi1N2Λij=1NΛj
253 127 252 remulcld φlogNi1N2Λij=1NΛj
254 86 253 remulcld φ1 .0799552 1 .414logNi1N2Λij=1NΛj
255 59 254 remulcld φ31 .0799552 1 .414logNi1N2Λij=1NΛj
256 1 2 210 90 hgt750lemb φndrepr3N|¬d0OΛn0Λn1Λn2logNi1N2Λij=1NΛj
257 112 253 216 lemul2d φndrepr3N|¬d0OΛn0Λn1Λn2logNi1N2Λij=1NΛj1 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn21 .0799552 1 .414logNi1N2Λij=1NΛj
258 256 257 mpbid φ1 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn21 .0799552 1 .414logNi1N2Λij=1NΛj
259 3rp 3+
260 259 a1i φ3+
261 113 254 260 lemul2d φ1 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn21 .0799552 1 .414logNi1N2Λij=1NΛj31 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn231 .0799552 1 .414logNi1N2Λij=1NΛj
262 258 261 mpbid φ31 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn231 .0799552 1 .414logNi1N2Λij=1NΛj
263 6re 6
264 263 58 pm3.2i 63
265 dp2cl 6363
266 264 265 ax-mp 63
267 178 266 pm3.2i 263
268 dp2cl 263263
269 267 268 ax-mp 263
270 115 269 pm3.2i 4263
271 dp2cl 42634263
272 270 271 ax-mp 4263
273 dpcl 1042631 .4263
274 60 272 273 mp2an 1 .4263
275 274 a1i φ1 .4263
276 275 130 remulcld φ1 .4263N
277 116 58 pm3.2i 83
278 dp2cl 8383
279 277 278 ax-mp 83
280 116 279 pm3.2i 883
281 dp2cl 883883
282 280 281 ax-mp 883
283 58 282 pm3.2i 3883
284 dp2cl 38833883
285 283 284 ax-mp 3883
286 137 285 pm3.2i 03883
287 dp2cl 0388303883
288 286 287 ax-mp 03883
289 dpcl 10038831 .03883
290 60 288 289 mp2an 1 .03883
291 290 a1i φ1 .03883
292 291 128 remulcld φ 1 .03883 N
293 276 292 remulcld φ1 .4263N 1 .03883 N
294 127 293 remulcld φlogN1 .4263N 1 .03883 N
295 86 294 remulcld φ1 .0799552 1 .414logN1 .4263N 1 .03883 N
296 59 295 remulcld φ31 .0799552 1 .414logN1 .4263N 1 .03883 N
297 vmage0 i0Λi
298 243 297 syl φi1N20Λi
299 235 244 298 fsumge0 φ0i1N2Λi
300 2 3 hgt750lemd φi1N2Λi<1 .4263N
301 fzfid φ1NFin
302 15 a1i φj1NΛ:
303 238 sselda φj1Nj
304 302 303 ffvelcdmd φj1NΛj
305 vmage0 j0Λj
306 303 305 syl φj1N0Λj
307 301 304 306 fsumge0 φ0j=1NΛj
308 2 hgt750lemc φj=1NΛj< 1 .03883 N
309 245 276 251 292 299 300 307 308 ltmul12ad φi1N2Λij=1NΛj<1 .4263N 1 .03883 N
310 252 293 309 ltled φi1N2Λij=1NΛj1 .4263N 1 .03883 N
311 160 a1i φ1
312 1lt2 1<2
313 312 a1i φ1<2
314 311 179 128 313 210 ltletrd φ1<N
315 128 314 rplogcld φlogN+
316 252 293 315 lemul2d φi1N2Λij=1NΛj1 .4263N 1 .03883 NlogNi1N2Λij=1NΛjlogN1 .4263N 1 .03883 N
317 310 316 mpbid φlogNi1N2Λij=1NΛjlogN1 .4263N 1 .03883 N
318 253 294 216 lemul2d φlogNi1N2Λij=1NΛjlogN1 .4263N 1 .03883 N1 .0799552 1 .414logNi1N2Λij=1NΛj1 .0799552 1 .414logN1 .4263N 1 .03883 N
319 317 318 mpbid φ1 .0799552 1 .414logNi1N2Λij=1NΛj1 .0799552 1 .414logN1 .4263N 1 .03883 N
320 254 295 260 lemul2d φ1 .0799552 1 .414logNi1N2Λij=1NΛj1 .0799552 1 .414logN1 .4263N 1 .03883 N31 .0799552 1 .414logNi1N2Λij=1NΛj31 .0799552 1 .414logN1 .4263N 1 .03883 N
321 319 320 mpbid φ31 .0799552 1 .414logNi1N2Λij=1NΛj31 .0799552 1 .414logN1 .4263N 1 .03883 N
322 157 resqcli 1 .0799552
323 322 168 remulcli 1 .0799552 1 .414
324 274 290 remulcli 1 .4263 1 .03883
325 323 324 remulcli 1 .0799552 1 .414 1 .4263 1 .03883
326 58 325 remulcli 31 .0799552 1 .414 1 .4263 1 .03883
327 hgt750lem2 31 .0799552 1 .414 1 .4263 1 .03883<7 .348
328 326 124 327 ltleii 31 .0799552 1 .414 1 .4263 1 .038837 .348
329 326 a1i φ31 .0799552 1 .414 1 .4263 1 .03883
330 315 131 rpdivcld φlogNN+
331 126 214 rpexpcld φN2+
332 330 331 rpmulcld φlogNNN2+
333 329 125 332 lemul1d φ31 .0799552 1 .414 1 .4263 1 .038837 .34831 .0799552 1 .414 1 .4263 1 .03883logNNN27 .348logNNN2
334 328 333 mpbii φ31 .0799552 1 .414 1 .4263 1 .03883logNNN27 .348logNNN2
335 275 recnd φ1 .4263
336 130 recnd φN
337 291 recnd φ1 .03883
338 128 recnd φN
339 335 336 337 338 mul4d φ1 .4263N 1 .03883 N= 1 .4263 1 .03883N N
340 339 oveq2d φlogN1 .4263N 1 .03883 N=logN 1 .4263 1 .03883N N
341 127 recnd φlogN
342 335 337 mulcld φ 1 .4263 1 .03883
343 336 338 mulcld φN N
344 342 343 mulcld φ 1 .4263 1 .03883N N
345 341 344 mulcomd φlogN 1 .4263 1 .03883N N= 1 .4263 1 .03883N NlogN
346 340 345 eqtrd φlogN1 .4263N 1 .03883 N= 1 .4263 1 .03883N NlogN
347 342 343 341 mulassd φ 1 .4263 1 .03883N NlogN= 1 .4263 1 .03883N NlogN
348 346 347 eqtrd φlogN1 .4263N 1 .03883 N= 1 .4263 1 .03883N NlogN
349 348 oveq2d φ1 .0799552 1 .414logN1 .4263N 1 .03883 N=1 .0799552 1 .414 1 .4263 1 .03883N NlogN
350 86 recnd φ1 .0799552 1 .414
351 343 341 mulcld φN NlogN
352 350 342 351 mulassd φ1 .0799552 1 .414 1 .4263 1 .03883N NlogN=1 .0799552 1 .414 1 .4263 1 .03883N NlogN
353 349 352 eqtr4d φ1 .0799552 1 .414logN1 .4263N 1 .03883 N=1 .0799552 1 .414 1 .4263 1 .03883N NlogN
354 353 oveq2d φ31 .0799552 1 .414logN1 .4263N 1 .03883 N=31 .0799552 1 .414 1 .4263 1 .03883N NlogN
355 59 recnd φ3
356 350 342 mulcld φ1 .0799552 1 .414 1 .4263 1 .03883
357 355 356 351 mulassd φ31 .0799552 1 .414 1 .4263 1 .03883N NlogN=31 .0799552 1 .414 1 .4263 1 .03883N NlogN
358 354 357 eqtr4d φ31 .0799552 1 .414logN1 .4263N 1 .03883 N=31 .0799552 1 .414 1 .4263 1 .03883N NlogN
359 135 recnd φN2
360 341 336 359 132 div32d φlogNNN2=logNN2N
361 359 336 132 divcld φN2N
362 341 361 mulcomd φlogNN2N=N2NlogN
363 338 sqvald φN2= N N
364 363 oveq1d φN2N= N NN
365 338 338 336 132 divassd φ N NN=NNN
366 divsqrtid N+NN=N
367 126 366 syl φNN=N
368 367 oveq2d φNNN=NN
369 364 365 368 3eqtrd φN2N=NN
370 338 336 mulcomd φNN=N N
371 369 370 eqtrd φN2N=N N
372 371 oveq1d φN2NlogN=N NlogN
373 360 362 372 3eqtrrd φN NlogN=logNNN2
374 373 oveq2d φ31 .0799552 1 .414 1 .4263 1 .03883N NlogN=31 .0799552 1 .414 1 .4263 1 .03883logNNN2
375 358 374 eqtrd φ31 .0799552 1 .414logN1 .4263N 1 .03883 N=31 .0799552 1 .414 1 .4263 1 .03883logNNN2
376 125 recnd φ7 .348
377 133 recnd φlogNN
378 376 377 359 mulassd φ7 .348logNNN2=7 .348logNNN2
379 334 375 378 3brtr4d φ31 .0799552 1 .414logN1 .4263N 1 .03883 N7 .348logNNN2
380 255 296 136 321 379 letrd φ31 .0799552 1 .414logNi1N2Λij=1NΛj7 .348logNNN2
381 114 255 136 262 380 letrd φ31 .0799552 1 .414ndrepr3N|¬d0OΛn0Λn1Λn27 .348logNNN2
382 57 114 136 228 381 letrd φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn27 .348logNNN2